Fish fauna of Gray's Reef National Marine Sanctuary and the implications for place-based management.

Jonathan A. Hare* Harvey J. Walsh Katrin E. Marancik NOAA NOS NCCOS Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, North Carolina 28516

* Current address NOAA NMFS NEFSC Narragansett Laboratory 28 Tarzwell Drive Narragansett, RI 02882 E-mail address: jon.hare@noaa.gov

David Score**

NOAA NOS ONMS Gray's Reef National Marine Sanctuary 10 Ocean Science Circle Savannah, Georgia 31411

**Current address NOAA Ship NANCY FOSTER Marine Operations Center, Atlantic 439 West York Street Norfolk, Virginia 23510-1145

George R. Sedberry

SCDNR Marine Resources Research Institute P. O. Box 12559 (217 Ft. Johnson Rd.) Charleston, South Carolina 29422-2559

Richard O. Parker Jr.

NOAA NMFS SEFSC Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, North Carolina 28516

Roger W. Mays

NOAA NOS NCCOS Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, North Carolina 28516

For Fishery Bulletin

1 Abstract - Marine Protected Areas (MPAs) are becoming an important tool both for 2 single-species and ecosystem-based management, and an important initial step in MPA 3 design is identification of the species that reside in specific areas or that use 4 representative habitats within specific ecosystems. The southeastern U.S. continental 5 shelf ecosystem encompasses a variety of habitats, yet most discussions of MPAs in the 6 region have revolved around the need to protect rocky-reef habitat, which supports 7 important commercial and recreational fisheries. Gray's Reef National Marine Sanctuary 8 could serve a role in a larger network of marine reserves, or could serve as a 9 representative site for documenting the ecology of species associated with inner-shelf 10 rocky reefs; this latter information then could be used in design criteria for selecting other 11 rocky-reef sites to serve as marine reserves. The purpose of this study was to develop a 12 more complete view of the fish species that inhabit Gray's Reef NMS. Data on larval, 13 juvenile, and adult life stages was combined from previous studies to provide as complete 14 a view as possible of the ichthyofauna of Gray's Reef NMS. One-hundred eighty one 15 species of fish were found in the vicinity of the Sanctuary; 27 species were classified as 16 common, and 46 species are currently managed for fishery purposes. Classification of 17 species as either resident or transient revealed that resident species accounted for 37% of 18 the total. The fish species collected in the Sanctuary used a diverse array of habitats over 19 a wide range of bathymetric zones. As adults, fishes were reported from unconsolidated 20 sediments, reefs, submerged vegetation, pelagic, and pelagic vegetation habitats from 21 estuaries to the outer shelf. From the perspective of the ichthyofauna, species that inhabit 22 the Sanctuary use a wide-range of habitats, spread over a large portion of the shelf, and 23 include areas to the north and south of the Sanctuary. Research to quantitatively

understand the inter-dependencies among species and habitats is clearly needed, yet from
the qualitative data presented here, Gray's Reef NMS cannot be managed successfully in
isolation, underscoring the broader importance of managing fish and habitat on the
southeast U.S. continental shelf using ecosystem-wide approaches to achieve multiple
management goals.

29 Introduction

30	Marine Protected Areas (MPAs) ¹ are becoming an important tool both for single-
31	species and ecosystem-based management (Lubchenco et al., 2003). One subset of MPAs
32	are marine reserves, defined as areas in which some or all of the biological resources are
33	protected from removal or disturbance (NRC, 2001; Lubchenco et al., 2003). Marine
34	reserves are typically implemented to protect or rebuild specific marine resources (e.g.,
35	species, representative habitats, representative parts of ecosystems). A number of design
36	criteria have been proposed for marine reserves and other types of MPAs, and an
37	important element of these criteria is knowledge of the distribution, abundance, and
38	dynamics of species within the ecosystem (Hockey and Branch, 1997; Leslie et al., 2003;
39	Roberts et al., 2003a , b). Further, implementation and management of MPAs requires
40	ecological information about constituent species, in particular the dependence of
41	resources within an MPA to outside areas and outside resources, and the movement of
42	resources from inside to outside of the MPA (Polacheck, 1990; NRC, 2001). Thus, an
43	important initial step in MPA and marine reserve design and implementation is
44	identification of the species that reside in specific areas or that use representative habitats
45	within specific ecosystems (see Roberts et al., 2003a, b).
46	The southeastern U.S. continental shelf ecosystem is comprised of a variety of
47	habitats, yet most discussions of MPAs have revolved around the need to protect rocky-
48	reef habitat, which supports important commercial and recreational fisheries. Rocky reefs
49	are interspersed among unconsolidated sediments along the southeast U.S. continental
50	shelf and upper slope from the east coast of Florida to Cape Hatteras, North Carolina.

¹ Marine Protected Areas are defined as "... any area of the marine environment that has been reserved by Federal, State, territorial, tribal, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein". (FR, 2000).

51 Approximately 30% of the bottom is estimated to be rocky-reef habitat with the 52 remaining bottom covered by unconsolidated sediments (Parker et al., 1983; SEAMAP-53 SA, 2001). In addition to exposed rock, there are areas where large sessile invertebrates 54 such as sponges and corals attach to the rock, and there are many areas where these 55 sessile invertebrates protrude through a thin veneer of unconsolidated sediment, which 56 covers underlying rock (Wenner et al., 1983). Rocky reefs and sandy areas with 57 associated attached invertebrates will be termed rocky-reef habitat. Rocky-reef habitat 58 supports a distinct assemblage of fishes, which include a number of commercially and 59 recreationally important species (Wenner et al., 1983; Sedberry and Van Dolah, 1984; 60 Parker and Ross, 1986; Parker et al., 1994). For example, many of the 73 species in the 61 South Atlantic Fishery Management Council's (SAFMC) snapper-grouper management 62 unit are associated with rocky-reef habitat (SAFMC, 1998). Some of these fishery species 63 are overfished (17.8%; NMFS, 2003), whereas others are not (13.7%, NMFS, 2003), but 64 the status of the majority of species within the management unit is unknown (68.5%), 65 NMFS, 2003). The SAFMC is considering MPAs, specifically marine reserves that 66 would prohibit bottom fishing, as fisheries management tools to assist in the rebuilding of 67 overfished stocks and to contribute to a strategy of ecosystem management (SAFMC, 68 1990; 2001).

Along the southeast U.S. coast there are several large coastal MPAs, including
National Estuarine Research Reserves and National Marine Sanctuaries (Fig. 1). Gray's
Reef National Marine Sanctuary (Gray's Reef NMS) is one of the few MPAs that
encompasses continental shelf areas along the southeast coast of the United States. The
Sanctuary is 58 km² and is located approximately 30 km east of Sapelo Island, Georgia

74	(Fig. 1). Designated in 1981 (FR, 1981), the Sanctuary is representative of inner-shelf
75	rocky reefs of the southeast U.S. shelf (Sedberry and Van Dolah, 1984; Parker et al.,
76	1994), although it has more vertical relief than most other inshore rocky-reefs (> 1 m,
77	Parker et al., 1994). The objectives of the Sanctuary are to provide protection and
78	comprehensive management for the rocky-reef habitat and associated biological
79	communities (FR, 1981). Gray's Reef NMS was not established as a fisheries
80	management tool (i.e., a marine reserve), and regulations generally conform to fishing
81	restrictions imposed by the SAFMC, which has jurisdiction in federal waters of the
82	region. In addition to following SAFMC regulations, Gray's Reef NMS prohibits wire
83	fish traps, bottom trawling, longlines and spears equipped with explosive projectiles
84	(powerheads). Commercial fishing gear such as vertical hook and line (the dominant gear
85	in the reef fish fishery in the region) is allowed, as is all recreational fishing gear. It is
86	unlikely that Gray's Reef NMS will become a marine reserve (i.e., a no-take zone).
87	However, Gray's Reef NMS could serve a role in a larger network of marine reserves, or
88	could serve as a representative site for documenting the ecology of species associated
89	with inner-shelf rocky reefs. This latter information then could be used in design criteria
90	for selecting other rocky-reef sites on the southeast U.S. shelf to serve as marine reserves.
91	An important step in understanding the role of Gray's Reef NMS in the larger
92	context of marine reserves on the southeast U.S. shelf is determining the species that
93	occur in the Sanctuary. Adult and large juvenile fishes have been enumerated with trawl
94	collections, trap collections, and diver-conducted video surveys (Sedberry and Van
95	Dolah, 1984; Parker et al., 1994; Sedberry et al., 1998), but these studies emphasized the
96	rocky-reef habitat in the Sanctuary. Although adult fishes have been described in

97 unconsolidated sediments (Parker et al., 1994), there is little information regarding the
98 entire assemblage of species that occur on unconsolidated habitats within the Sanctuary,
99 even though these areas make up approximately 70% of bottom habitat (Matt Kendall,
100 NOAA NOS NCCOS Center for Coastal Monitoring and Assessment, pers. comm.).
101 Further, previous studies have examined adult and large juvenile fishes in the Sanctuary,
102 but there is only limited information regarding the occurrence of larval and juvenile
103 stages.

104 The purpose of this study was to develop a more complete view of the fish species 105 that inhabit Gray's Reef NMS. We combined additional adult census data with previously 106 published data. We also included larval and juvenile fish data collected around the 107 perimeter of the Sanctuary. The various datasets describe a much more diverse fish fauna, 108 and the view emerges that Gray's Reef NMS is much more than an area protecting rocky-109 reef habitat and reef fishes. Further, there is evidence for substantial interaction between 110 species that use rocky-reef habitat in the Sanctuary and species that use a number of other 111 habitats in the coastal ocean indicating that management efforts should focus on the 112 entire ecosystem rather than specific habitats.

113

114 Materials and methods

115 Data for fishes in Gray's Reef NMS were derived for three life stages from six sources.

116 Large juvenile/adult data were derived from trawl collections, fish trap collections, diver

117 video transects, and stationary diver point counts. Juvenile data were derived from beam

118 trawl collections. Larval data were derived from ichthyoplankton collections. The

119 specific methods associated with each data source are provided below; the sampling time,

effort, and gears used are detailed in Table 1. Only bony fishes (Osteichthyes) will be
considered here, because most of the gears reviewed did not collect sharks and rays
(Chondrichthyes).

123

124 Adult and large juvenile censuses

125 Bottom Trawls. Trawling was conducted in the area of Gray's Reef NMS before 126 designation as a NMS. Briefly, a 40/54 high rise trawl was used, which is effective in 127 sampling fishes on rough bottom (Sedberry and Van Dolah, 1984). Trawl samples were 128 standardized by towing the net for an approximate distance of 1 km. Adult and large 129 juvenile fish were collected, sorted to species and counted. Data were collected in 1980 130 and 1981 and stratified by season: winter (January-March, 1980; March 1981), spring 131 (April, 1981), summer (August-September, 1980; July 1981), and fall (October, 1981). 132 Seasonal abundance was calculated as total number of individuals collected in a season 133 divided by number of trawls made in a season (see Sedberry and Van Dolah, 1984). 134 135 Traps. Chevron-shaped wire fish traps were baited with cut clupeids and deployed at 136 randomly selected reef stations within Gray's Reef NMS for approximately 90 min. Trap 137 deployments were made during summer (July) from 1993-2002. Upon retrieval of the 138 trap, adult and large juvenile fish were sorted to species and counted. Abundance was 139 calculated as total number of individuals caught divided by the number of trap sets (see 140 Sedberry et al., 1998).

141

142 Video Transects. Divers swam 15-min transects at randomly selected sites in five habitats 143 within Gray's Reef NMS. One diver swam with a video camera in a rigid forward 144 position approximately 1 m above the bottom. Transect distance was measured using a 145 towed surface buoy. Videotaped transects were viewed to estimate the abundance of each fish species on a given transect. Video surveys were conducted in the spring (May), 146 147 summer (August), and fall (November), but data were pooled across season and stratified 148 by habitat. Abundance was calculated as total number of fish counted divided by total 149 transect distance in a given habitat (see Parker et al., 1994). 150 151 Point Counts. In 1995, a permanent study site was established on a randomly chosen

152 rocky-reef ledge within the Sanctuary, and 22 stations at this site were randomly selected.

153 At each station, a stainless steel rod (1 cm x 100 cm) was cemented into holes drilled into

154 the reef substrate. Following the random selection of fixed stations, a modified version of

155 the stationary sampling method was used to enumerate fishes (Bohnsack and Bannerot,

156 1986) with a cylinder width of 4 m radius. Point counts were made over eight years in

157 three seasons: spring (April), summer (June, July, and August), and fall (October and

158 November). Data were stratified by season; abundance was calculated as number of fish

159 counted divided by number of point counts made in a given season.

160

161 Juvenile and larval census

162 Juvenile and larval fish sampling was conducted approximately every other month from

163 April 2000 through February 2002. Ten stations were located approximately 18.5 km

apart along a 93-km cross-shelf transect spanning the Georgia shelf. The sampling

165	transect bisected Gray's Reef NMS and four stations were sampled just outside the
166	perimeter of the Sanctuary. All four seasons were sampled: winter (January, February,
167	and March), spring (April and May), summer (June and August), and fall (October). Only
168	the species abundance data by seasons from the stations around Gray's Reef NMS were
169	considered here. The full cross-shelf juvenile fish dataset was analyzed by Walsh et al.
170	(in review) and the full cross-shelf larval fish data set was analyzed by Marancik et al.
171	(2005).

172

173 <u>Beam Trawl</u>. At each station, juvenile fish collections were made with a 2-m beam trawl 174 with 6-mm mesh body and a 3-mm mesh tail bag. Three replicate, 5-min tows were made 175 at each station. Juvenile fish abundance was calculated as fish per 5 min tow and the 176 three replicates were averaged to represent abundance at each station. Adults were 177 removed from the analyses of beam trawl collections using the estimated size of first 178 maturity as a minimum size threshold for inclusion in data analysis (see Walsh et al., in 179 review).

180

Bongo. Larval fish collections were made with a 61-cm paired bongo frame with either
333 or 505 μm mesh nets. The net was fished double obliquely and deployed to within 1
m of the bottom. On one sampling cruise, a 1-m ichthyoplankton sled with 333-μm mesh
was used. Larval fish collected with the 1-m sled and 61-cm bongo were similar and data
from both gears were used (Marancik, 2003). Larval concentration was calculated as fish
100 m⁻³.

188 Data compilation and analysis

Percent abundance was calculated for each taxon from the sum of all abundances-perunit-effort within a season, or in the case of the video transect data, within a habitat.
Species were ranked by relative abundance and cumulative percent abundance was
calculated. Common species observed during each census were defined as species
making up greater than 5% of the total abundance. Typically, fewer than five species per
census and season were classified as common.

195 Data from the different census techniques were combined to derive an overall 196 species list for Gray's Reef NMS. The species list was then used to derive a list of 197 managed species that occur within the vicinity of the Sanctuary. Data from the larval and 198 juvenile censuses were also used to determine which species are spawning (the 199 occurrence of small larvae) and which species are settling (the occurrence of settlement 200 size juveniles) in the vicinity of the Sanctuary. Sedberry et al. (in press) presented 201 spawning times and locations for a number of fishes on the southeast U.S. shelf based on 202 reproductive data obtained from trawl, trap, and hook-and-lines samples. All records of 203 spawning females within 30 km of Gray's Reef NMS were obtained and used to augment 204 spawning information derived from larval surveys.

Patterns in the seasonal and habitat-specific occurrence of species were then examined qualitatively from comparison of the species number, abundance of fish, and diversity. Species number is simply the number of taxa occurring in a census. Abundance was calculated as the number of fish per unit of sampling (per see above). Species diversity (H') was calculated following Pielou (1969):

210
$$H' = -\sum_{i=1}^{S} p_i (\log_2 p_i)$$

where S is the total number of species and p_i is the proportion of the total sample
belonging to species i.

213	Finally, distribution and habitat information was obtained for each species from
214	the literature. Dominant sources of information included data from studies that were
215	included here (Sedberry and Van Dolah, 1984; Marancik et al., 2005; Walsh et al., in
216	review). However, a number of additional sources were used to compile complete
217	distribution and habitat-specific occurrences of each species (see Appendix 2).
218	Distribution was categorized into six cross-shelf zones: palustrine, estuarine, inner-shelf,
219	mid-shelf, outer-shelf, and upper slope. Six habitat categories were defined: rocky reef,
220	sediment, submerged vegetation, pelagic vegetation, and pelagic. Fish distribution and
221	habitat use was defined for larval, juvenile, and adult life stages. In addition, the mode of
222	spawning was categorized as either pelagic or benthic. Finally, a determination was made
223	whether a species is resident or transient in Gray' Reef NMS. These life history,
224	distribution, and habitat attributes were then summarized to examine general patterns in
225	the ecology of fishes that inhabit Gray's Reef NMS.
226	

227 **Results**

228 Common species

A total of 27 taxa were found to be common (> 5% of total) in one or more fish censuses

230 in the vicinity of Gray's Reef NMS (Table 2). Some of these taxa included multi-species

231 groups (e.g., Anchoa spp., Etropus spp.), and thus the number of common species in

232 Gray's Reef NMS likely exceeds 30. The adult and large juvenile censuses all provided a

similar view of the ichthyofauna of Gray's Reef NMS with common species including

234 Haemulon aurolineatum, Stenotomus spp., Decapterus macarellus--D. punctatus (the en-235 dash means that fish were identified as D. macarellus or D. punctatus), Halichoeres 236 bivittatus, Serranus subligarius, Diplodus holbrooki, and Centropristis striata. A 237 different view of common fishes was obtained from juvenile fish collections: Etropus 238 spp., Prionotus spp., Ophidion selenops, Diplectrum formosum, Microgobius carri, 239 Stephanolepis hispidus, Dactyloscopus moorei, and Leiostomus xanthurus. Larval fish 240 collections provided yet another view of the ichthyofauna of Gray's Reef NMS, with 241 common species including *Caranx* sp.--*Chloroscombrus chysurus*, *Symphurus* spp., 242 Ophidion marginatum, Diplogrammus pauciradiatus, Larimus fasciatus, Brevoortia 243 tyrannus, Micropogonias undulatus, Anchoa spp., Etropus spp. Prionotus spp., 244 Microgobius carri [as included in Gobiidae], Leiostomus xanthurus, and Citharichthys 245 spilopterus. In addition, sparid larvae were common but could not be identified below 246 family level. Although common species differed between census types, species common 247 in one census were often present in another census in lower numbers and thus, all three 248 approaches (adult, juvenile and larval censuses) provide different, yet complementary 249 views of the ichthyofauna of Gray's Reef NMS.

250

251 Managed Species

A total of 46 species managed by various state and federal agencies were found in Gray's

253 Reef NMS (Table 3). Half of these species are part of the SAFMC Snapper-Grouper

complex (NMFS, 2003), and a number of managed mackerel and tuna species also

255 occurred in the Sanctuary. Species managed by the Mid-Atlantic Fisheries Management

256 Council (MAFMC), New England Fisheries Management Council (NEFMC) and

257	Atlantic States Marine Fisheries Commission (ASMFC) were present in Gray's Reef
258	NMS, as well as, a number of species that are regulated by Florida, Georgia, South
259	Carolina, and North Carolina. Managed species that are common (Table 4) include
260	members of the Snapper-Grouper complex managed by the SAFMC and three species
261	managed by the ASMFC (Micropogonias undulatus, Brevoortia tyrannus, and
262	Leiostomus xanthurus), which spawn on the shelf during fall, winter, and spring, and
263	whose juveniles use estuarine habitats.
264	
265	Spawning
266	The occurrence of small larvae and spawning females indicated that 53 taxa of fish spawn
267	in the vicinity of Gray's Reef NMS (Table 4). A number of managed species spawn in
268	the vicinity of the Sanctuary, including coastal migratory pelagic species managed by the
269	SAFMC (e.g., Scomberomorus cavalla and S. maculatus) and species managed by the
270	ASFMC and the southeastern states (e.g., Brevoortia tyrannus, Leiostomus xanthurus,
271	and Sciaenops ocellatus). Although the management focus of Gray's Reef NMS is rocky-
272	reef habitat, the general absence of lutjanid and epinepheline larvae indicates that snapper
273	and grouper are not spawning in the vicinity of Gray's Reef NMS. However, spawning
274	females of Rhomboplites aurorubens and Diplectrum formosum were collected within 30
275	km of Gray's Reef NMS (Sedberry et al., in press).
276	
277	Settlement

278 Settlement stage juveniles of 20 taxa were found in the vicinity of Gray's Reef NMS

279 (Table 5). In addition, four pelagic species were collected that were undergoing the

larval-juvenile transition. A wide range of species were collected that settle to a broad
range of habitats. Importantly, very few settlement-stage reef fish were collected, but this
likely results from gear biases (i.e., the lack of direct sampling on rocky reefs) rather than
the absence of reef fish settlement at Gray's Reef NMS.

284

285 Seasonal Patterns in Species Number, Abundance and Diversity

There was a strong seasonal pattern in the number of species collected across gear types(Fig. 2A). Species number was highest during the summer for all collection methods and

288 was second highest in the fall for all censuses except the juvenile census. Winter and

spring had a relatively similar number of species with a few more species collected

290 during spring in the adult censuses and more species collected during winter in larval and

291 juvenile censuses. The higher number of species during winter in larval and juvenile fish

292 collections was due in part to the presence of estuarine-dependent species in the vicinity

293 of Gray's Reef NMS during winter (B. tyrannus, L. xanthurus, M. undulatus).

294 Seasonal patterns also were observed in absolute abundance, but were not 295 consistent across censuses (Fig. 2B). Absolute abundance was highest during summer or 296 fall, depending on the census. The high summer and fall abundances in the bottom trawl 297 collections were driven by *Stenotomus* spp. and *Haemulon aurolineatum* in the summer 298 (42.6% and 42.2% of total catch) and *Sardinella aurita* in the fall (43.9% of total catch) 299 (see Table 1). The high summer and fall abundances in adult point counts were driven 300 largely by Decapterus punctatus--D. macarellus (77.6% in summer and 54.6% in fall of 301 total catch). Abundances in the juvenile censuses were relatively even over the seasons, 302 but the dominant taxon in the fall was *Prionotus* spp. (52.0% of total catch). Summer

303 abundances of larvae were more even across species with Anchoa spp., Caranx sp--

304 *Chloroscombrus chrysurus*, *Symphurus* spp., *Diplogrammus pauciradiatus*, and Gobiidae

accounting for 80.1% of total abundance.

306 There was little congruence in the seasonal pattern of species diversity (H') 307 between sampling methods (Fig. 2C), which was expected owing to the patterns observed 308 in the number of species and their numerical abundance. For bottom trawl collections of 309 large juveniles and adults, H' was highest in winter owing to the relatively even 310 distribution of abundance among species. In point counts, H' was highest in spring, again 311 owing to the relatively even distribution of abundance among species. Highest H' in 312 juvenile and larval censuses occurred in the summer and fall respectively because of the 313 high number of species collected. Relatively high H' in winter larval collections was 314 again caused by relatively few species with an even abundance distribution.

315

316 **Compilation of species and ecological information**

317 A total of 181 species was reported from Gray's Reef NMS from the six censuses 318 combined (Appendix 1). Classification of species as either resident or transient revealed 319 that resident species accounted for 37% of the total (Table 4). A majority of the transient 320 species were likely seasonal migrants (52% of total), and a relatively small number of 321 expatriated species occurred in the Sanctuary (9% of total). Three eel species that move through the Sanctuary during their life cycle also occurred (2% of total; Anguilla 322 323 rostrata, Conger oceanicus, and Myrophus punctatus). In considering only common 324 species (> 5% of total in any one census method), 49% of common species were resident 325 and 51% were transient, and all the transient species were likely seasonal migrants (Table

6). A higher percentage of managed species were transients (74%) compared to residents
(26%), and most of these transients were seasonal migrants with a few expatriates.

328 Although the management focus of Gray's Reef NMS is rocky-reef habitat and 329 associated biological communities, the fishes collected in the Sanctuary used a diverse 330 array of habitats. As adults, fishes were reported from unconsolidated sediments, reefs, 331 submerged vegetation, pelagic, and pelagic vegetation habitats (in rank order, Fig. 3). 332 Juveniles were reported from a similar array of habitats as adults, but more species 333 occurred in pelagic vegetation as juveniles than as adults. Fewer species were reported 334 from reef habitats as juveniles, but part of this difference resulted from a lack of 335 knowledge of juvenile habitat for many reef fish species. These patterns in habitat use 336 were consistent when considering all species, abundant species, and managed species, 337 with the exception that a greater proportion of managed species were found in reef 338 habitat.

339 The species that occurred at Gray's Reef NMS were reported to use habitats from 340 the estuary to the slope (Fig. 4). The greatest number of species reportedly use the inner 341 and mid-shelves as adults (\sim 54%). A fewer number of species are reported to use areas 342 inshore of the inner-shelf and offshore of the mid-shelf (23%). A greater percentage of 343 juveniles were found in habitats inshore of the inner-shelf (29%) compared to the inner-344 and mid-shelves (48%); the percentage of juveniles found in habitats offshore of the mid-345 shelf was similar to the percentage of adults (23%). A greater percentage of common 346 species were reported from coastal and estuarine areas (27% and 29%) compared to all 347 species combined. The importance of habitats inshore of the inner-shelf was even more

evident for the adult and juvenile stages of managed species (30% and 45% of managedspecies) compared to all species combined.

350

351 **Discussion**

352 One-hundred eighty one species of fish were found in the vicinity of Gray's Reef NMS. 353 A total of 27 species were common (Table 2), and 46 species are currently managed for 354 fishery purposes (Table 3). A clear pattern in species occurrence from all the censuses 355 was an increase in the number of species in the summer, which has been documented in 356 earlier studies (Sedberry and Van Dolah, 1984; Wenner and Sedberry, 1989; Marancik et 357 al., 2005). Much of the summertime increase in species number was due to the seasonal 358 migration of warmer-water species. There was some additional evidence that species 359 number increases in the summer owing to the settlement from the plankton of warm-360 water species. In the winter, species diversity (H') was relatively high, because a number 361 of estuarine and pelagic species were abundant again owing to seasonal migrations. 362 The fraction of marine migratory species using estuaries decreases with latitude 363 (see review by Nordlie 2003). The gradient is illustrated by reviews of fishes in Mid-364 Atlantic estuaries and Florida Bay. Able and Fahay (1998) determined that in Mid-365 Atlantic estuaries, 28% of 70 fish species were resident, and 66% were transient. In a 366 similar study of Florida Bay, Powell et al. (in review) reported that 47% of the 60 fish 367 species were resident and 53% were transients. At Gray's Reef NMS, a location in 368 between Mid-Atlantic estuaries and Florida Bay, an intermediate percentage of species 369 were categorized as resident (37%) and transient (63%). These data suggest that the 370 latitudinal trend in marine migratory species in estuarine habitats may extend onto the

371 shelf and future work examining large-scale spatial patterns in the composition of372 ichtyofauna would contribute to regional management strategies.

373 Taxonomy remains a limiting factor in the study and management of fishes along 374 the southeast U.S. coast. This study illuminates three general taxonomic issues. First, our 375 ability to identify the early life stages of a number of species is still limited. The larval 376 census (Marancik et al., 2005) identified some common fishes and managed fishes to 377 genus or family only (e.g., Symphurus spp., Urophyscis spp., Serraninae, Caranx sp--378 *Chloroscombrus chrysurus*). Similarly in the juvenile census, the identification of several 379 abundant species was to genus only (e.g., Prionotus spp., Etropus spp.). New methods of 380 early life stage identification (e.g., Hare et al., 1998; Sevigny et al., 2000) coupled with 381 traditional techniques (see Fahay, 1984; Richards et al., in press) will improve early life 382 stage taxonomy, but the application of these new techniques is still not widespread. A 383 second taxonomic issue is the identification of species by divers. Without collecting 384 voucher specimens and verifying the identifications of each diver, there may be 385 inconsistencies among divers. An example is the identification of Decapterus 386 macarellus--D. punctatus. Divers identified large schools of these fish as either one 387 species or the other. Both species are outwardly similar in appearance (Robins and Ray, 388 1986) and impossible to identify to species in mixed-species schools. Taxonomic 389 experience of divers can be balanced by sample size if the availability of inexperienced 390 divers leads to greater number of observations (Pattengill-Semmens and Semmens, 391 1998). Yet, it seems prudent for monitoring programs to determine likely taxonomic 392 problems and either disregard data collected for problematic species or use higher 393 taxonomic groups (as done here). A third issue is outstanding taxonomic uncertainties

394 along the southeast U.S. shelf. For example, *Stenotomus* spp. have been identified as 395 Stenotomus aculeatus (Wenner and Sedberry, 1989; Sedberry et al., 1998), but 396 Eschmeyer (2004) considered the taxa as a synonym of S. chrysops. Both S. chrysops and 397 S. caprinus are reported from the area (Carpenter, 2003) and as a result of this taxonomic 398 uncertainity, ecology of *Stenotomus* along the southeast U.S. coast remain unresolved. 399 In addition to taxonomic limitations, our understanding of Gray's Reef NMS 400 ichthyofauna is limited by several data gaps including: the ecology of juvenile reef fish, 401 understanding of the pelagic fish fauna, trophic linkages between reef and non-reef 402 habitats, and the importance of unconsolidated sediments on the shelf to fish productions. 403 Further, our review considered only bony fishes; information regarding elasmobranches 404 is not included. These data gaps hamper the development of ecosystem approaches to 405 fisheries and place-based management. Very little is known regarding the ecology of 406 juvenile reef fish on rocky reefs along the southeast U.S., yet the ecology of juvenile 407 coral reef fish has been the focus of intense study and has yielded great insights both 408 scientifically and for management (e.g., Lindeman et al., 2000; Levin and Grimes, 2002). 409 Juvenile fish ecology in temperate rocky reefs has also been studied in regions other than 410 the southeast U.S. shelf and again lead to improved management of fisheries and habitat 411 resources (Vigliola et al., 1998; Planes et al, 2000).

Another important data gap includes pelagic fishes. Juvenile and adult pelagic
fishes associated with *Sargassum* are relatively well studied (e.g., Dooley, 1978; CostonClements et al., 1991; Settle, 1993). Similarly, pelagic fish of commercial importance
(e.g., king mackerel, Spanish mackerel) also are well studied (e.g., Collins and Stender,
1987; Collins et al., 1998; Harris and Dean, 1998). In contrast, relatively little is known

417 regarding the juvenile and adult stages of most pelagic fishes. The abundance of these 418 species (e.g., *Decapterus punctatus*, *D. macarellus*, and *Chloroscombrus chrysurus*) 419 suggests an important ecological role in the ecosystem that has yet to be investigated (but 420 see Hales, 1987; McBride et al., 2002). 421 Concepts of fish habitat utilization are developing on the southeast U.S. shelf 422 (SAFMC, 1998). In a few habitats, particularly submerged vegetation in estuaries, the 423 effect of habitat on vital rates has been examined (Hoss and Thayer, 1993; Irlandi and 424 Crawford, 1997; Taylor and Miller, 2001; Levin and Hay, 2003). However, such detailed 425 information on the interaction between habitat and fish population vital rates has not been 426 conducted for the majority of habitats in the southeast U.S. ecosystem. 427 The focus of Gray's Reef NMS is protection of rocky-reef habitat. Additionally, 428 the Sanctuary is mandated to provide protection and comprehensive management for 429 biological communities associated with rocky-reef habitat. From the perspective of the 430 ichthyofauna, associated biological communities include a wide-range of habitats, spread 431 over a large portion of the shelf, and include areas to the north and south of the 432 Sanctuary. Most species reported from the Sanctuary have pelagic larvae (Appendix 1) 433 and thus, the ichthyofauna is connected to other areas through pelagic larval transport 434 (sensu Roberts et al., 1997; Cowen, 2002); the areal extent of these connections has not 435 yet been quantified. Additionally, a number of the adult stages, which inhabit rocky reefs 436 in the Sanctuary, use other habitats as both juveniles and adults. *Mycteroperca microlepis* 437 and *Centropristis striata* use habitats within estuaries as juveniles (Able et al., 1995; Ross 438 and Moser, 1995); *M. microlepis* spawns on the edge of the continental shelf, and *C.* 439 striata spawns across the shelf (Sedberry et al., in press). Several species of *Caranx* use

440 pelagic sargassum as juvenile habitat (Coston-Clements et al., 1991; Settle, 1993). 441 Centropristis ocyurus and Stenotomus sp. use unconsolidated sediments during both 442 juvenile and adult stages (Wenner et al., 1983; Sedberry and Van Dolah, 1984; Walsh et 443 al., in review). 444 In addition to using multiple habitats, there are a large number of transient species 445 that spend a portion of their life cycle in Gray's Reef NMS. The seasonal pattern in 446 species number in part reflects the increase in transient species using the system in the 447 summer. However, a number of transient species also use the Sanctuary in the fall and 448 winter. The abundance of these transient species is affected in part by ecological 449 processes and human actions outside of the Sanctuary's boundaries. 450 Many resident species are distributed over a wide cross-shelf region, yet the 451 movement of individuals has only been examined for a few of the 67 resident species. 452 Tagging indicated that approximately 6% of C. striata in Gray's Reef NMS move out of 453 the Sanctuary within one month (Sedberry et al., 1998). Seasonal data is documented for 454 other species, but more shorter-time scale information on movement is not available for 455 the remaining 66 species resident in Gray's Reef NMS. 456 Diet studies and stable isotope analyses indicate trophic links between pelagic, 457 unconsolidated sediments, and rocky-reef habitats (e.g., Sedberry 1989; Thomas and 458 Cahoon, 1993). Although these links have been identified, they have yet to be combined 459 into a trophic model of the ecosystem (e.g., Polovina, 1984). 460 From the perspective of the ichthyofauna, the connections among life history stages, 461 habitats, and different portions of the shelf (both along and across), indicate that 462 associated biological communities include much of the southeast U.S. ecosystem. Thus, it

463 is not possible for Gray's Reef NMS to protect and provide comprehensive management 464 for the ichthyofauna associated with 'live-bottom' and rocky-reef habitats, since authority 465 does not extend to the biological boundaries of the ichthyofauna. In addition, the 466 Sancturay imposes few restrictions on harvest beyond those employed by the regional 467 fisheries management council (SAFMC). In fact, Gray's Reef NMS is an area of intense 468 recreational fishing and fishing mortality there may exceed other areas of the shelf. 469 Management objectives need to be achieved by working with other management groups 470 that have authority in the areas outside the Sanctuary boundaries (e.g., SAFMC, State of 471 Georgia), and by extending the Sanctuary boundaries to encompass a greater range of the 472 southeast U.S. continental shelf ecosystem. Such large sanctuaries do exist in the Florida 473 Keys and along the west coast of the United States.

474 From the perspective of MPAs and marine reserves on the southeast U.S. shelf, 475 the present study indicates that separating individual components of the ecosystem for 476 protection will be difficult. For example, many of the species that use rocky-reef habitat 477 also use a range of other habitats; protecting only rocky-reef habitat will provide only 478 partial protection for these species. Similar difficulty was encountered identifying 479 Essential Fish Habitat (EFH) for the 72 species of the snapper-grouper management unit; 480 almost every structural habitat type was identified as EFH (SAFMC, 1998; Lindeman et 481 al., 2000). If management goals include the protection of one to several species, specific 482 habitats and cross-shelf regions could be defined, but as the number of species expands 483 and protection goals move from species to habitats, the scale required for protection 484 quickly becomes most, if not all of the elements of the southeast U.S. shelf ecosystem. In 485 1990, cross-shelf MPA corridors were discussed (SAFMC, 1990), but then were dropped

486 from consideration. Modeling studies with sessile invertebrates indicate that to protect 487 biodiversity, the scale of MPAs needs to be approximately equal to the scale of larval 488 dispersal (Botsford et al., 2003; Shanks et al., 2003). In the case of marine fishes, the 489 protection of biodiversity becomes much more complicated with ontogenetic movements 490 and seasonal migrations. The fishes of Gray's Reef NMS depend on a broad array of 491 habitats and areas throughout much of the southeast U.S. continental shelf ecosystem. 492 Research to quantitatively understand these inter-dependencies is needed. Yet, from the 493 qualitative data presented here, Gray's Reef NMS cannot be managed successfully in 494 isolation, underscoring the broader importance of managing the southeast U.S. 495 continental shelf ecosystem to achieve multiple management goals (NMFS, 1999). 496

497 Acknowledgements

We thank all the people involved in the collection of the data presented here. We also thank Allyn Powell, Don Hoss, and Greg McFall for reviewing earlier drafts of this manuscript, Mike Fahay for taxonomic expertise. Gray's Reef National Marine Sanctuary and the Office of National Marine Sanctuaries supported this compilation and supported many of the censuses used in the compilation. The MARMAP Program supported the trap census and the Minerals Management Service supported the trawl census.

504

Literature Cited

Able, K. W., and M. P. Fahay.

1998. The first year in the life of estuarine fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, New Jersey, USA. 342 p.

Able, K. W., M. P. Fahay, and G. R. Shepherd.

1995. Early life history of black sea bass, *Centropristis striata*, in the Mid-Atlantic Bight and a New Jersey estuary. Fish. Bull. 93:429-445.

Bohnsack, J. A., and S. P. Bannerot.

1986. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Tech. Report NMFS 41, 15 p.

Botsford, L. W., M. Fiorenza, and A. Hastings.

2003. Principle of marine reserve design. Ecol. Appl. 13 (Suppl.): S25-S31.

Carpenter, K. E. (ed.).

2003. FAO identification guide for fishery purposes. The Living MarineResources of The Western Central Atlantic. Three volumes. FAO, Rome. 2127 p.

Collins, M. R., and B. W. Stender.

1987. Larval king mackerel (Scomberomorus cavalla), Spanish mackerel (S. maculatus), and bluefish (Pomatomus saltatrix) off the southeast coast of the United States, 1973-1980. Bull. Mar. Sci. 41:822-834.

Collins, M. R., P. J. Harris, and P. P. Maier.

1998. Fishery-independent recruitment indices for king and Spanish mackerels. N.Am. J. Fish. Manage. 18:181-186.

Coston-Clements, L., L. R. Settle, D. E. Hoss, and F. A. Cross.

1991. Utilization of the Sargassum habitat by marine invertebrates and vertebrates
– a review. NOAA Tech. Memo. NMFS-SEFSC-296, 32 p.

Cowen, R. K.

2002. Larval dispersal and retention and consequences for population connectivity.. *In* Coral Reef Fishes, Dynamics and Diversity in a Complex Ecosystem (Sale, P. F., ed.), p. 149-170. Academic Press, Amsterdam, Netherlands.

Dooley, J. K.

1978. Fishes associated with the pelagic sargassum complex, with a discussion of the sargassum community. Contrib. Mar. Sci. 16:1-32.

Eschmeyer, W. N.

2004. Catalog of the genera of recent fishes. California Academy of Sciences, San Francisco.

(http://www.calacademy.org/research/ichthyology/catalog/fishcatsearch.html) (Accessed 27 March 2005).

Fahay. M. P.

1984. Guide to the early stages of marine fishes occurring in the western North Atlantic Ocean, Cape Hatteras to the southern Scotian Shelf. J. Northwest Atl. Fish. Sci. 4:1-423.

FR (Federal Register).

1981. Final Designation Document – Designation of the Gray's Reef National Marine Sanctuary. 46 FR 7943-7944.

FR (Federal Register).

2000. Presidential documents. Executive Order 13158 of May 26, 2000. Marine Protected Areas 65 FR 34909-34911.

Hales, L. S. Jr.

- 1987. Distribution, abundance, reproduction, food habitats, age and growth of round scad (*Decapetrus punctatus*) in the South Atlantic Bight. Fish. Bull.
 85:251-268.
- Hare, J. A., R. K. Cowen, J. P. Zehr, F. Juanes, and K. H. Day.
 - 1998. A correction to: Biological and oceanographic insights from larval labrid (Pisces: Labridae) identification using mtDNA sequences. Mar. Biol. 130:589-592.
- Harris, P. J., and J. M. Dean.
 - 1998. Characterization of king mackerel and Spanish mackerel bycatches of South Carolina shrimp trawlers. N. Am. J. Fish. Manage. 18:439-453.
- Hockey, P. A., and G. M. Branch.
 - 1997. Criteria, objectives, and methodology for evaluating marine protected areas in South Africa. S. African J. Mar. Sci. 18:369-383.

Hoss, D. E., and G. W. Thayer.

- 1993. The importance of habitat to the early life history of estuarine dependent fishes. Amer. Fish. Soc. Symp. 14:147-158.
- Irlandi, E. A., and M. K. Crawford.
 - 1997. Habitat linkages: The effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia 110:222-230.
- Leslie, H., M. Ruckelshaus, I. R. Ball, S. Andelman, and H. P. Possingham.
 2003. Using siting algoriths in the design of marine reserve networks. Ecol. Appl. 13 (Suppl.) S185-S199.

Levin, P. S., and C. B. Grimes.

2002. Reef fish ecology and grouper conversation and management. pp. 377-390.*In* Coral Reef Fishes, Dynamics and Diversity in a Complex Ecosystem (Sale, P F.). p. 377-390. Academic Press, Amsterdam, Netherlands.

Levin, P. S., and M. E. Hay.

2003. Selection of estuarine habitats by juvenile gags in experimental mesocosms. Trans. Am. Fish. Soc. 132:76-83.

Lindeman, K. C., R. Pugliese, G. T. Waugh, and J. S. Ault.

- 2000. Developmental patterns within a multispecies reef fishery: Management applications for essential fish habitats and protected areas. Bull. Mar. Sci. 66:929-956.
- Lubchenco, J., S. R. Palumbi, S. D. Gaines, and S. Andelman.
 - 2003. Plugging a hole in the ocean: the emrging science of marine reserves. Ecol. Appl. 13 (Suppl.) S3-S7.

- 2003. Larval fish assemblages of the Georgia Bight. M.S. Thesis, East Carolina University, Greenville, North Carolina, 149 p.
- Marancik, K. E., L. M. Clough, and J. A. Hare.
 - 2005. Cross-shelf and seasonal variation in larval fish assemblages on the southeast United States continental shelf off the coast Georgia, USA. Fish. Bull. 103: 108-129.
- McBride, R. S., F. J. Stengard, and B. Mahmoudi.

Marancik, K. E.

2002. Maturation and diel reproductive periodicity of round scad (Carangidae: *Decapterus punctatus*). Mar. Biol. 140:713-722.

NMFS (National Marine Fisheries Service).

1999. Ecosystem-based fishery management: a report to Congress by the Ecosystem Principles Advisory Panel. U.S. Department of Commerce, Washington, D.C.

NMFS (National Marine Fisheries Service).

2003. Sustaining and rebuilding: NOAA Fisheries 2002. Report to Congress: The status of U.S. fisheries. U.S. Department of Commerce, Washington, D.C.

Nordlie, F. G.

2003. Fish communities of estuarine salt marshes of eastern North America, and comparisons with temperate estuaries of other continents. Rev. Fish Biol. Fish.13: 281-325.

NRC (National Research Council).

- 2001. Marine protected areas: tools for sustaining ocean ecosystems. National Academy Press, Washington, D.C.
- Parker Jr., R. O., A. J. Chester, and R. S. Nelson.
 - 1994. A video transect method for estimating reef fish abundance, composition and habitat utilization at Gray's Reef National Marine Sanctuary, Georgia. Fish. Bull. 92:787-799.
- Parker Jr., R. O, D. R. Colby, and T. D. Willis.
 - 1983. Estimated amount of reef habitat on a portion of the U. S. South Atlantic and Gulf of Mexico Continental Shelf. Bull. Mar. Sci. 33:935-940.

Pattengill-Semmens, C. V., and B. X. Semmens.

1998. An analysis of fish survey data generated by nonexpert volunteers in the Flower Garden Banks National Marine Sanctuary. Gulf Mex. Sci. 16:196-207.Pielou, E. C.

1969. An introduction to mathematical ecology. Wiley-Interscience, N. Y. 286 p.

- Planes, S., R. Galzin, G. Rubies, R. Goni, J.-G. Harmelin, L. Le Direach, P. Lenfant, and A. Quetglas.
 - 2000. Effects of Marine Protected Areas on recruitment processes with special reference to Mediterranean littoral ecosystems. Environ. Conserv. 27:126-143.

Polacheck, T.

1990. Year around closed areas as a management tool. Nat. Resour. Model. 4:327-354.

Polovina, J. J.

1984. Model of a coral reef ecosystem. I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs 3:1-11.

Powell, A. B., G. Thayer, M. LaCroix, and R. Cheshire.

In review. The life history of juvenile and small resident fishes, and selected invertebrates in Floida Bay, Everglades National Park, Florida. NOAA Professional Papers

Richards, W. J. (ed.).

In press. Early Stages of Atlantic Fishes: An Identification Guide for the Western Central North Atlantic. CRC Press, Boca Raton, Florida.

Roberts, C. M.

- 1997. Connectivity and management of Caribbean coral reefs. Science 278:1454-1457.
- Roberts, C. M., S. Andelman, G. Branch, R. H. Bustamante, J. C. Castilla, J. Dugan, B. S.Halpern, K. D. Lafferty, H. Leslie, J. Lubchenco, D. McArdle, H. P. Possingham,M. Ruckelshaus, and R. R. Warner.
 - 2003a. Ecological criteria for evaluating candidate sites for marine reserves. Ecol. Appl. 13 (Suppl.): S199-S214.
- Roberts, C. M., G. Branch, R. H. Bustamante, J. C. Castilla, J. Dugan, B. S. Halpern, K.D. Lafferty, H. Leslie, J. Lubchenco, D. McArdle, M. Ruckelshaus, and R.R.Warner.
 - 2003b. Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol. Appl. 13 (suppl.): s199-s214.

- 1986. A field guide to Atlantic coast fishes of North America. Houghton Mifflin Company, Boston, Massachusetts, USA, 354 pp.
- Ross, S. W., and M. L. Moser.
 - 1995. Life history of juvenile gag, *Mycteroperca microlepis*, in North Carolina estuaries. Bull. Mar. Sci. 56:222-237.
- SAFMC (South Atlantic Fisheries Management Council).
 - 2001. Magnuson-Stevens Act/NEPA scoping document: using Marine Protected Areas in the South Atlantic. SAFMC, Charleston, SC.
- SAFMC (South Atlantic Fisheries Management Council).

Robins, C. R., and G. C. Ray.

- 1998. Habitat plan for the South Atlantic region: Essential fish habitat requirements for fishery management plans of the South Atlantic Fishery Management Council. SAFMC, Charleston, SC.
- SAFMC (South Atlantic Fisheries Management Council). South Atlantic Council Reef Fish Plan Development Team.
 - 1990. The potential of marine fishery reserves for reef fish management in the U.S. southern Atlantic. NOAA Tech. Memo. NMFS-SEFC-261. 40 p.
- SEAMAP-SA (Southeast Area Monitoring and Assessment Program South Atlantic).
 - 2001. Distribution of bottom habitats on the continental shelf from North Carolina through the Florida Keys. Atlantic States Marine Fisheries Commission, Washington, District of Columbia, USA, 166 pp.

Sedberry, G. R.

- 1989. Feeding habits of whitebone porgy, *Calamus leucosteus* (Teleostei: Sparidae), associated with hard bottom reefs off the southeastern United States.Fish. Bull. 87:935-944.
- Sedberry, G. R., J. C. McGovern, and C. A. Barans.
 - 1998. A comparison of fish populations in Gray's Reef National Marine Sanctuary to similar habitats off the southeastern U.S.: implications for reef fish and Sanctuary management. Proc. Gulf Carib. Fish. Instit. 50:452-481.
- Sedberry, G. R., O. Pashuk, D. M. Wyanski, J. A. Stephen, and P. Weinbach. In press. Spawning locations for Atlantic reef fishes off the southeastern U.S. Proc. Gulf Carib. Fish. Instit.
- Sedberry, G. R., and R. F. Van Dolah.

1984. Demersal fish assemblages associated with hard bottom habitat in the South Atlantic Bight of the U.S.A. Environ. Biol. Fish. 11:241-258.

Settle, L. R.

- 1993. Spatial and temporal variability in the distribution and abundance of larval and juvenile fishes associated with pelagic Sargassum. M.S. Thesis, University of North Carolina, Wilmington.
- Sevigny, J.-M., P. Gagne, Y. de Lafontaine, and J. Dodson.
 - 2000. Identification and distribution of larvae of redfish (*Sebastes fasciatus* and *S. mentella*: Scorpaenidae) in the Gulf of St. Lawrence. Fish. Bull. 98:375-388.

Shanks, A. L., B. A. Grantham, and M. H. Carr.

2003. Propogule dispersal distance and the size and spacing of marine reserves.Ecol. Appl. 13 (Suppl.): S159–S169.

Taylor, J. C., and J. M. Miller.

2001. Physiological performance of juvenile southern flounder, *Paralichthys lethostigma* (Jordan and Gilbert, 1884), in chronic and episodic hypoxia. J. Exp. Mar. Biol. Ecol. 258:195-214.

Thomas, C. J., and L. B. Cahoon.

- 1993. Stable isotope analyses differentiate between different trophic pathways supporting rocky-reef fishes. Mar. Ecol. Prog. Ser. 95:19-24.
- Vigliola, L., M. L. Harmelin-Vivien, F. Biagi, R. Ralzin, A. Garcia-Rubies, J.-G.
 Harmelin, J.-Y. Jouvenel, L. Le Direach-Boursier, E. Macpherson, and L. Tunesi.
 1998. Spatial and temporal patterns of settlement among sparid fishes of the genus
 Diplodus in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 168:45-56.

Walsh H. J., K. E. Marancik, and J. A. Hare.

in review. Juvenile fish assemblages of unconsolidated sediments on the southeast

United States continental shelf off the coast of Georgia, USA. Fish. Bull.

Wenner, C. A., and G. R. Sedberry.

1989. Species composition, distribution, and relative abundance of fishes in the coastal habitat off the southeastern United States. NOAA Tech. Report NMFS-SSRF-79, 41 p.

Wenner, E. L., D. M. Knott, R. F. Van Dolah, and V. G. Burrell.

1983. Invertebrate communities associated with hard bottom habitats in the South Atlantic Bight. Estuar. Coast. Shelf Sci. 17:143-158.

Table 1. Sampling details for various fish censuses of Gray's Reef National Marine Sanctuary considered in this study stratified by season.

Habitats sampled are abbreviated as: reef (R), live-bottom (LB), unconsolidated sediments (US), and pelagic (P)

Census Type	Sampling method	Effort	Habitat	Season and Year	Reference					
Adult trawl census 40/54 high rise tra		12 tows	R, LB, US	Winter, 1980 & 1981	1980 data – Sedberry and Van Dolah (1984)					
		11 tows	R, LB, US	Summer, 1980, 1981	1981 data - previously unpublished 1980 data – Sedberry and Van Dolah (1984) 1981 data - previously unpublished					
		6 tows 6 tows	R, LB, US R, LB, US	Spring, 1981 Fall, 1981	previously unpublished previously unpublished					
Adult trap census	Chevron traps	412 counts	R, LB	Summer, 1993-2002	Sedberry et al. (1998) 1993-1995 Previously unpublished, 1996-2002					
Adult video census	Diver-conducted video transects	22 transects 22 transects 22 transects	R Dense LB Moderate LB		Parker et al. (1994) Parker et al. (1994) Parker et al. (1994)					
		23 transects 21 transects	Sparse LB US		Parker et al. (1994) Parker et al. (1994) Parker et al. (1994)					
Adult point counts	Diver-conducted stationary 4 m ² cylinder	83 counts 105 counts	R R	Fall, 1995-2002 Spring, 1995-2002	previously unpublished previously unpublished					
Juvenile trawl census	point counts 2-m Beam Trawl	124 counts 36 tows	R US	Summer, 1995-2002 Winter 2000-2002	previously unpublished Walsh et al. (in review)					
		23 tows 46 tows	US US	Spring 2000-2002 Summer 2000-2002	Walsh et al. (in review) Walsh et al. (in review)					
Larval census	60 cm bongo with 505	24 tows 26 tows	US P	Fall 2000-2002 Winter 2000-2002	Walsh et al. (in review) Marancik et al. (2005)					
	um mesh	11 tows 25 tows 15 tows	P P P	Spring 2000-2002 Summer 2000-2002 Fall 2000-2002	Marancik et al. (2005) Marancik et al. (2005) Marancik et al. (2005)					

Table 2. Common fish species occurring in the vicinity of Gray's Reef National Marine Sanctuary. Percent total abundance calculated as abundance of taxa divided by sum abundance of all taxa. Only those species that comprised >5% of total abundance in at least one census were considered common. Bold numbers indicate abundance >5%. No entry indicates that taxa was not collected in that particular season or gear. The stratification of collection data is described in the Methods and the following abbreviations are used: Sp – spring, Su – summer, F – fall, W – winter, L – ledge, DLB – dense live-bottom, MLB – moderate live-bottom, SLB – sparse live-bottom, and S - sand. Parker et al. (1996) provides more detail regarding the habitat definitions.

-	Adult and Large Juvenile												Iuveni	le and	Small	Δdult						
											Juvenile and Small Adult				Larvae							
	Bottom Trawl			Traps		Video Transect				Point Count			Beam Trawl				Bongo					
Taxa	Sp	Su	F	W	Su	L	DLB	MLB	SLB	US	Sp	Su	F	Sp	Su	F	W	Sp	Su	F	W	Notes
Stenotomus sp.	93.4	42.6	10.2	33.9	34.8	1.0	8.2	15.1	38.9	53.8	0.3	1.2	0.5	1.7	3.5	0.4	0.2					
Haemulon aurolineatum		42.2	20.4		7.4	44.8	15.0	7.4	0.4		23.7	9.8	29.7		1.2							
Urophycis regia	0.7			20.8										1.7			2.4				1.6	1
Centropristis striata	1.6	3.1	0.7	6.7	50.5	3.9	4.8	2.1	0.9	1.4	1.9	0.6	0.5	0.1	0.9							
Lagodon rhomboides	0.0	0.2	0.3	14.8	4.1								0.0								3.9	
Sparidae																		0.7	1.1		7.6	
Decapterus macarellusD. punctatus	0.3	1.8	1.3			25.7	44.6	59.4	41.7	32.3		77.6	54.6		4.1				0.5	0.3		
Halichoeres bivittatus	0.3	0.1	0.0		0.0	13.0	20.1	10.1	9.1	1.4	26.0	2.5	4.8		0.3				0.6			
Diplodus holbrooki	0.1	0.0		0.6	1.7	1.3	0.3	0.5			22.4	3.4	3.7									
Serranus subligarius		0.0				1.7	2.2	0.8	0.4		14.0	1.0	1.4						0.8			
Sardinella aurita	0.0	0.3	43.9												0.2							
Anchoa spp.			20.9												1.7	6.6		24.2	35.7	5.2		
Etropus spp.														44.2	11.2	4.9	62.8	4.3	0.4	0.8	7.7	
Prionotus spp	0.7	2.5	0.1	0.4										18.9	3.2	53.4	8.8	40.3	1.2	17.3	1.6	2
Ophidion selenops		0.0												12.6	3.4	12.8	4.7		0.3	0.5		
Diplectrum formosum	0.1	0.5	0.4		0.1	0.0	0.2	0.3	0.9	1.8	0.0	0.0	0.1	1.1	30.0	1.5	0.1		0.9	1.2		
Microgobius carri Gobiidae						0.0	0.1	0.1	0.4	1.4				0.3	13.0	2.4		19.5	4.9	5.8	1.6	3
Stephanolepis hispidus		0.8	0.5	0.2	0.1	0.1	0.1	0.1	0.4		0.0	0.0		0.7	5.1	1.6	0.1					
Dactyloscopus moorei				0.4										3.9	2.5	7.2	5.0		1.1	1.7		
Leiostomus xanthurus																	9.5			1.8	12.7	
Caranx spChloroscombrus chysurus		0.0	0.0		0.1	0.5	0.1	0.2	0.4			1.1	0.5			0.2			21.1	0.5		4
Symphurus spp.														2.1	3.6	2.6	1.1		11.7	3.5	1.7	5
Ophidion marginatum															0.6	0.1	0.1		0.1	24.4		
Diplogrammus pauciradiatus															0.4				7.4	7.7	1.7	
Larimus fasciatus		0.0																	0.1	6.3		
Brevoortia tyrannus																	0.4				32.0	
Micropogonias undulatus																			0.1	2.1	12.2	
Citharichthys spilopterus																					6.7	

Notes

1 - Larvae identified as Urophycis spp. (the most-defined taxonomic level for this genus in larval identifications) were included here.

2 - Adults and juveniles identified as *Prionotus* spp., *Prionotus carolinus*, *Prionotus ophryas*, and *Prionotus scitula* were grouped and considered as *Prionotus* spp. owing to inability to identify larvae, some juveniles and some adults to species.

3 - Larvae identified as Gobiidae (the most-defined taxonomic level for this family in larval identifications) were included here.

4 - Adults and juveniles identified as Chloroscombrus chrysurus, Caranx bartholomaei, Caranx crysos, Caranx ruber, and Caranx dentex were grouped and considered as Caranx spp.--Chloroscombrus chrysurus owing to inability to identify larvae to species.

5 - Juveniles identified as Symphurus urospilus, Symphurus minor, Symphurus diomedianus, and Symphurus plagiusa were grouped and considered here as Symphurus spp. owing to the inability to identify larvae to species.

Table 3. List of managed fish species reported from the vicinity of Gray's Reef National Marine Sanctuary. Common species (Table 2) are indicated by a C. Management authorities included are Atlantic States Fisheries Management Commission (ASFMC), Northeast Fisheries Management Council (NEFMC), Mid-Atlantic Fisheries Management Council (MAFMC), South Atlantic Fisheries Management Council (SAFMC), National Marine Fisheries Service (NMFS), State of Florida (FL), State of Georgia (GA), State of South Carolina (SC), and State of North Carolina (NC).

Scientific Name	Common Name		Management Authority
Anguilla rostrata	American eel		ASFMC, NC
Brevoortia tyrannus	Atlantic menhaden	С	ASFMC
Centropristis ocyurus	bank sea bass		SAFMC, SC
Centropristis striata	black sea bass	С	MAFMC, SAFMC, ASFMC, FL, GA, SC, NC
Centropristis philadelphica	rock sea bass		SAFMC, SC
Mycteroperca microlepis	gag		SAFMC, FL, GA, SC, NC
Mycteroperca phenax	scamp		SAFMC, FL, SC, NC
Pomatomus saltatrix	bluefish		MAFMC, ASFMC, FL, GA, SC, NC
Rachycentron canadum	cobia		SAFMC, FL, GA, SC, NC
Caranx bartholomaei	yellow jack	С	SAFMC, SC, NC
Caranx crysos	blue runner	С	SAFMC
Caranx rubber	bar jack	С	SAFMC, SC, NC
Seriola dumerili	greater amberjack		SAFMC, FL, GA, SC, NC
Seriola rivoliana	almaco jack		SAFMC, SC, NC
Coryphaena hippurus	dolphin		SAFMC, FL, GA, SC, NC
Lutjanus campechanus	red snapper		SAFMC, FL, SC, NC
Lutjanus griseus	gray snapper		SAFMC, FL, SC, NC
Lutjanus analis	mutton snapper		SAFMC, FL, SC, NC
Ocyurus crysurus	yellowtail snapper		SAFMC, FL, SC, NC
Rhomboplites aurorubens	vermilion snapper		SAFMC, FL, SC, NC
Haemulon aurolineatum	tomtate	С	SAFMC
Haemulon plumieri	white grunt		SAFMC, SC, NC
Archosargus probatocephalus	sheepshead		SAFMC, FL, GA, SC, NC
Calamus bajonado	jolthead porgy		SAFMC, SC, NC
Calamus leucosteus	whitebone porgy		SAFMC, SC, NC
Pagrus pagrus	red porgy		SAFMC, FL, GA, SC, NC
Stenotomus sp.	scup	С	SAFMC, ASFMC, SC, NC
Pogonias cromis	black drum		FL, GA
Cynoscion regalis	weakfish		ASFMC, FL, GA, SC, NC
Menticirrhus americanus	southern kingfish		GA
Menticirrhus littoralis	gulf kingfish		GA

Micropogonias undulatus	Atlantic croaker	С	ASFMC, GA
Sciaenops ocellatus	red drum		NMFS, ASFMC, FL, GA, SC, NC
Leiostomus xanthurus	spot	С	ASFMC, GA
Chaetodipterus faber	Atlantic spadefish		SAFMC, SC, NC
Mugil curema	white mullet		FL
Mugil cephalus	striped mullet		FL
Tautoga onitis	tautog		ASFMC
Scomberomorus cavalla	king mackerel		SAFMC, FL, GA, SC, NC
Scomberomorus maculates	Spanish mackerel		SAFMC, ASFMC, FL, GA, SC, NC
Euthynnus alletteratus	little tunny		SAFMC
Peprilus triacanthus	butterfish		MAFMC
Paralichthys lethostigma	southern flounder		FL, GA, SC, NC
Paralichthys albigutta	gulf flounder		FL, GA, NC
Scophthalmus aquosus	windowpane		NEFMC
Balistes capriscus	gray triggerfish		SAFMC, FL, SC, NC

Table 4. List of species that likely spawn in the vicinity of Gray's Reef National Marine Sanctuary. Determination of spawning was made from the occurrence of small larvae in ichthyoplankton collections made in the vicinity of the Sanctuary (source = Larvae) and the occurrence of spawning females within 30 km of the Sanctuary (source = Adults). Common species are indicated by a C (see Table 2).

Scientific Name	Common Name	Source	
Anchoa spp.	anchovies	Larvae	C
Beloniform	flying fishes	Larvae	
Blenniidae	blennies	Larvae	
Brevoortia tyrannus	Atlantic menhaden	Larvae	C
Caranx spChloroscombrus chysurus	jacks	Larvae	C
Citharichthys spilopterus	bay whiff	Larvae	C
Coryphaena hippurus	dolphin	Larvae	
Cynoscion nothus	silver seatrout	Larvae	
Cynoscion regalis	weakfish	Larvae	
Dactyloscopus moorei	sand stargazer	Larvae	0
Decapterus macarellus—D. punctatus	mackerel / round scad	Larvae	(
Diplectrum formosum	Sand perch	Adult	(
Diplogrammus pauciradiatus	spotted dragonet	Larvae	(
Etropus crossotus	fringed flounder	Larvae	
Etropus spp.	smallmouthed flounders	Larvae	(
Euthynnus alletteratus	little tunny	Larvae	
Gobiidae	gobies	Larvae	(
Halichoeres bivittatus	slippery dick	Larvae	(
Hippoglossina oblonga	four spot flounder	Larvae	
Lactophrys quadricornis	scrawled cowfish	Larvae	
Lagodon rhomboides	pinfish	Larvae	
Larimus fasciatus	banded drum	Larvae	(
Lutjanus sppOphisthognathidae	snapper/jawfish	Larvae	
Menticirrhus americanus	southern kingfish	Larvae	
Menticirrhus littoralis	gulf kingfish	Larvae	
Micropogonias undulatus	Atlantic croaker	Larvae	(
Myrophus punctatus	speckeled worm eel	Larvae	
Ophichthus cruentifer	margined snake eel	Larvae	
Ophidion holbrooki—O. antipholis	cusk eel	Larvae	
Ophidion marginatum	striped cusk eel	Larvae	(
Ophidion selenops	moon eyed cusk eel	Larvae	0

Atlantic thread herring	Larvae	
-	Larvae	
		С
		C
Vermillon snapper		
drums	Larvae	
red drum	Larvae	
king mackerel	Larvae	
Spanish mackerel	Larvae	
scorpionfish	Larvae	
pygmy seabass	Larvae	
belted sandfish	Larvae	С
porgies	Larvae	С
pufferfishes	Larvae	
gulf stream flouder	Larvae	
lizardfishes	Larvae	
hogchocker	Larvae	
stargazers	Larvae	
hakes	Larvae	
pearly razorfish	Larvae	
	red drum king mackerel Spanish mackerel scorpionfish pygmy seabass belted sandfish porgies pufferfishes gulf stream flouder lizardfishes hogchocker stargazers hakes	gulf butterfishLarvaebutterfishLarvaebutterfishLarvaeblack drumLarvaesearobinsLarvaeVermillon snapperAdultdrumsLarvaered drumLarvaeking mackerelLarvaeSpanish mackerelLarvaescorpionfishLarvaepygmy seabassLarvaebelted sandfishLarvaepufferfishesLarvaegulf stream flouderLarvaelizardfishesLarvaehogchockerLarvaehakesLarvae

Table 5. List of species that undergo the larval/juvenile transition in the vicinity of Gray's Reef National Marine Sanctuary. Determination of 'settlement-stage' was made based on fish size and comparison of size-at-settlement data in the literature (see Walsh et al., in review). Common species are indicated by a C (see Table 2).

Species Name	Common name	
Anchoa spp.	anchovies	С
Ancylopsetta quadrocellata	Ocellated flounder	
Ariosoma balearicum	bandtooth conger	
Bothus ocellatus—B. robinsi	eyed/spottail flounder	
Brevoortia tyrannus	Atlantic menhaden	С
Citharichthys spp.	Whiffs	C
Cynoscion nothus	silver seatrout	
Cynoscion regalis	weakfish	
Dactyloscopus moorei	sand stargazer	С
Decapterus macarellus—D. punctatus	mackerel / round scad	C
Diplectrum formosum	sand perch	С
<i>Etropus</i> spp.	smallmouthed flounders	C
Leiostomus xanthurus	spot	С
Microgobius carri	seminole goby	C
Stephanolepis hispidus	planeheaded filefish	С
Ophidion selenops	moon-eye cusk eel	C
Peprilus triacanthus	butterfish	
Prionotus spp.	searobins	С
Scophthalmus aquosus	windowpane flounder	
Serraniculus pumilio	pygmy sea bass	
Stenotomus sp.	scup	C
Syacium papillosum	gulf stream flounder	
Synodus foetens	inshore lizardfish	
Urophycis regia	spotted hake	С

Table 6. Designation of fishes from Gray's Reef National Marine Sanctuary as resident or transient, and further designation of transient species as seasonal migrants, expatriates, and other. Other includes three eel species that move through the Sanctuary during their life cycle.

	Resident	Transient	Seasonal Migrants	Expatriates	Other
All Species	67	114	94	17	3
Abundant Species	17	18	18	0	0
Managed Species	12	34	29	4	1

Figure 1. Map of the southeast U.S. continental shelf showing the location of Gray's Reef National Marine Sanctuary.

Figure 2. The number of fish species, abundance, and species diversity for each of four seasons from four fish censuses conducted at Gray's Reef National Marine Sanctuary.

Figure 3. The percentage of species reported from Gray's Reef National Marine Sanctuary that occur in different habitats of the southeast U.S. continental shelf ecosystem. Data are presented for both adult and juvenile life stages. Data are provided in Appendix 1, and sources are provided in Appendix 2.

Figure 4. The percentage of species reported from Gray's Reef National Marine Sanctuary that occur in different cross-shelf zones of the southeast U.S. continental shelf ecosystem. Data are presented for both adult and juvenile life stages. Data are provided in Appendix 1, and sources are provided in Appendix 2.

Figure 1

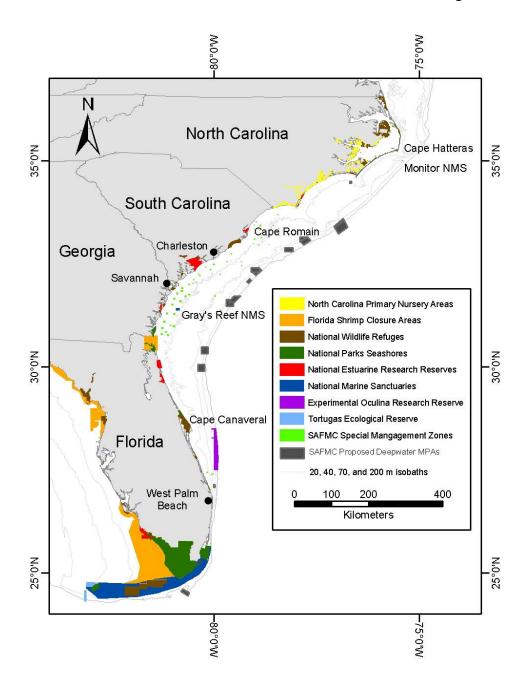


Figure 2

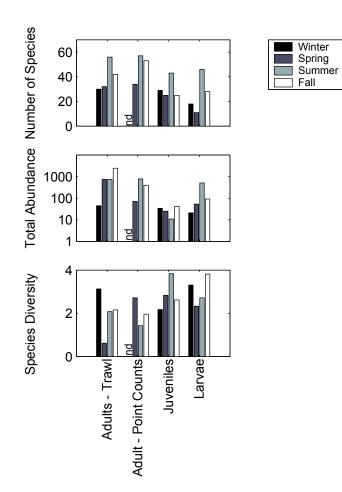
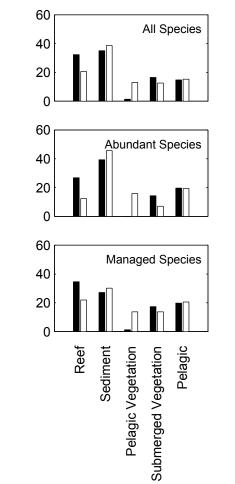



Figure 3

Adults
Juveniles

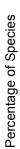
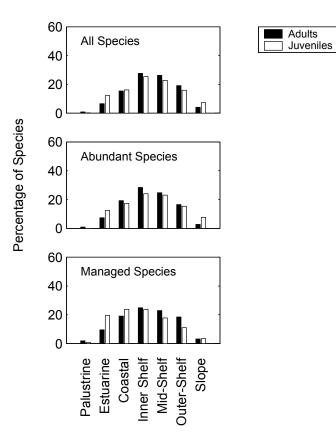



Figure 4

Appendix 1. Compilation of lif	e history information for fisl	hes repor	rted from (Gray's Reef Na	ational Marine S	anctuary.																					
																											\square
				Egg Larvae			1				Juv	eniles	6			1		Adu	ts							+	+++-+-
																								eť			
		Abundance Spawning	Resident / Transient Expatriates / Life History	Pelagic / Non-pelagic Palustrine Estuarine	Coastal Inner-shelf Mid-shelf	Outer-shelf Slope Abvsall	Emergent Vegetation	Submerged Vegetation	Submergent Sediment Submerged Sediment	Reef	Palustrine	Estuarine	Coastal Inner-shelf	Mid-shelf Outer-shelf	Slope	Aurysee Bethic Vegetation Submerged Sediment Pelagic Vegetation	Reef Pelagic	Palustrine	Estuarine	Cuastal Inner-shelf Mid-shelf Orter-shelf	Slope	Abysall Pelagic Vegetation	Submerged Vegetation Submerged Sediment	Pelagic Coral, Rocky, Oyster Reef		ces (see Ap	opendix 2)
Angullia rostrata	American eel		TL	P		S SI Ab			P		P	E	C IS	MS		BV S		Р	E C				SV S		45	1	ΠÍ
Myrophus punctatus	speckled worm eel		T L	P	IS MS				Р			Е	С			S			E C	IS			S		25 3		
	sailfin eel			P	IS MS C				Р				IS	MS OS		S				IS MS OS			S		25 3		\square
	margined snake eel			P	IS MS C				P	_			10	MS OS	SI	s				MS OS			S		25 3		+++
	palespotted snake eel bandtooth conger			P	IS MS C				P				IS IS	MS OS		S				IS MS OS IS MS OS			S		25 3 46 4		+++-
	spotted moray			P	MS C				P				C IS	MS OS		BV	R		С	IS MS OS			sv	R	40 4		+++
	conger eel			Р	IS MS C				P				C IS	MS OS		s	R		c	IS MS OS			s	R		6 47	
	Atlantic thread herring		T S	P	C IS MS C				Р		NO E	DATA -					Р		С	IS				Р	31 2	8 21	
Brevoortia tyrannus	Atlantic menhaden	а		P	IS MS C				Р			-	C IS				Р		С	IS MS OS				Р	1 5	3 33 3 28	i 54 21
Sardinella aurita	Spanish sardine	a		P NO DATA					Р	+			C IS	MS OS		PV	Р		С	IS MS OS	SI			Р	31 5		+++
	striped anchovy	а	1 0		C IS MS C	s	I		P				C IS	MS			P		E C	IS				P		8 54	+++
Anchoa lamprotenae	bigeye anchovy		1 0	P NO DATA - P NO DATA -					P	_		DATA -	IS				P		C	IS NO				P	54 2	1	+++-
Anchoa lyolepis Anchoa mitchilli	dusky anchovy bay anchovy		T S		C IS		-	\vdash	P	+		E	c					<u> </u>	C F C	IS MS	+		+ +	P	21 21	+++	+++
	silver anchovy	a	T S	P	MS C	s			P			DATA -					P		E C	IS MS OS	+			P		8 54 21	+++
Etrumeus teres	round herring		T S	P	MS C				P					MS			P		Ĩ	IS MS OS				P		8 54 21	
Synodus foetens	inshore lizardfish		R	P	IS MS C				Р			Е	C IS	MS OS		S			E C	IS MS OS			S			8 54 2 56	i
	sand diver		R	P	IS MS C				Р		NO E	DATA -							С	IS MS OS			S			2 56	
	snakefish			Р	IS MS C				Р				IS	MS OS		S			С	IS MS OS			SV S	R		4 2 56	+++
	Carolina hake			P	IS MS C				P			DATA -				+ + +				IS MS OS			S	R	31 2		+++
	southern hake spotted hake	_		P	IS MS C				P	_		DATA -	C IS	MS OS		s				IS MS OS			S		31 2	8 3 31 28 54	+++-
	spolled hake bank cusk-eel	a		P	IS MS C				P			5	IS	WIS US		s			С	IS MS OS			s		28 3		+++-
Ophidion holbrookiO. antipholis			R	Р	IS MS C				P				IS			s			Ŭ	OS NO OS			s			6 24	
Ophidion josephi			R	P	IS MS C				Р					MS		S			С	IS MS			S		31 2		
Ophidion marginatum	striped cusk-eel	а	R	P	IS MS				Р				IS	MS		S			С	IS MS			S		1 2		
Ophidion selenops	mooneye cusk-eel	а	R	P	IS MS C				Р				IS	MS OS		S				IS MS OS			S		28 5		\square
	polka-dot cusk-eel		T S	P	IS MS C	s			P			_		MS OS		S							S	-		8 54	+++
opoundo purduo o. luu	leopard/oyster toadfish Atlantic midshipman			N NO DATA - N NO DATA -					s	R		E	C IS	MS OS MS OS		BV	R		E C	IS MS OS IS MS OS			SV S	R	31 31 5	4	+++
	shortnose batfish			P NO DATA -	MS				P	ĸ			IS	MS US		S				IS MS OS		_	s		28 5		+++
	roughback batfish			P	MS				P				IS	MO		s				MS OS			s			8 56 7	+++-
	skilletfish		R	? NO DATA -					s	R	NO E	DATA -											SV	R	33		
Hirundichthys affinis	fourwing flyingfish		T S	N	IS MS C	S			Р				IS	MS OS	SI	PV	Р			IS MS OS				Р	54 3	1	
	ballyhoo			N NO DATA					Р				C IS	MS		PV	P		E C	IS			SV	P	54 3		\square
	chain pipefish		T S	N	C IS				Р			E	C IS	MS OS		SV PV			E C	IS MS OS		PV	SV		28 1		+++
	bull pipefish lined seahorse			N	MS C	s			P			-	IS IS	MS OS MS OS		SV S PV SV S PV	\vdash		E C	MS OS		PV PV		R		4 13 8 54 13	+++
prese prese serves	lined seanorse barbfish		R	N 2	C IS IS MS C	s	-	\vdash	P	+	NO	DATA -				31 3 11	++-	<u> </u>	E C	IS MS OS IS MS OS		PV	37 9	R		8 54 13 4 56	+++
Scorpaena calcarata	smoothhead scorpionfish		T S	?	IS MS C		1		P			DATA - DATA -								IS MS OS		-	s		28 1		+++
Scorpaena dispar	hunchback scorpionfish		T S	?	IS MS C				P				IS	MS OS		s	R			MS OS				R		4 14	
Scorpaena plumieri	spotted scorpionfish		R	?	IS MS C				Р				IS	MS OS		S	R			IS MS OS				R	28 5	4 14	
Prionotus carolinus	northern searobin	a		P	IS MS C				Р			Е	C IS	MS OS		S			E C	IS MS OS			s			8 54 42	\square
	bandtail searobin			P	IS MS C			\vdash	P			1	_	MS	_	s	\vdash			IS MS OS	+		S			8 42	+++
Prionotus scitulus	leopard searobin	-		P	IS MS C		-	\vdash	P	+				MS	L	S			E C	IS NO OD	+		S			8 54 42	+++
Datylopterus volitans Centropristis ocyurus	flying gurnard bank sea bass	\vdash		N	IS MS C	s		\vdash	P	+	NU	DATA -		MS OS		S	R	- -		IS MS OS			5	R		3 28 56 4 8 56	+++
	rock sea bass			P NO DATA ·			1	\vdash	P	+	NO	DATA -		1.00 100						IS MS US	+		s	R	41 5		+++
Centropristis striata	black sea bass	a		P	IS MS C	s	1		P			E	C IS			s	R			IS MS OS			ľ	R		3 54 8	
	sand perch	a		P	IS MS C	S			Р					MS OS	SI	SV S	R			IS MS OS			SV S	R	38	6 28 54 8	56
Serranus subligarius	belted sandfish	а		P	MS C	S			Р				C IS			SV	R			IS				R		8 8	
	pygmy sea bass			Р	MS				Р				IS	MS OS		S	R			IS MS OS			SV S	R		8 54 8	++
	gag		1 0	P	MS C				P			E	C			SV	R			IS MS OS			SV	R		8 19	+++
	scamp	$\left \right $		P	IS MS C		-	\vdash	P	+			C IS	MS	├──	SV	R	<u>├ </u>		MS OS	+ +		$\left \right $	R	28		+++
Rypticus saponaceus Rypticus maculatus	greater soapfish whitespotted soapfish	-	I S		IS MS C		-		P			-		OS OS		s	ri P			IS MS OS	+		+	R	64	1 22	+++
	bigeye		T S	P	MS 0		1		P					MS OS	SI	-	R			MS OS			s	R		4 50	+++
	short bigeye			P	MS C		1		P					MS OS		S PV	R			IS MS OS			s	R		4 50 56	
· · · · · ·	3.7.	· · · · ·							. r							1 12 17 2		· · · ·					1 17		0	120100	

				Egg	Larva	e								Juveniles							Adul	ts										
					_					_	-							-					-									\Box
		Abundance	Spawning Resident / Transient	Expatriates / Life History Pelagic \ Non-pelagic	Palustrine	Estuarine Coastal	nner-shelf Mid. shot	Duter-shelf	Slope Abysall	Emergent Vegetation	Submerged vegetation	Submerged Sediment Pelagic	Reef	⊃alustrine ≣stuarine Coastal	nner-shelf	Mid-shelf Duter-shelf	Abysall Activity Constantion	Submerged Sediment	Pelagic Vegetation	əelagic	Palustrine	Estuarine	Coastal	Mid-shelf Vid-shelf	Slope	Abysall Pelacic Vecetation	Submerged Vegetation	Submerged Sediment Pelagic	Coral, Rocky, Oyster Reef	References (s	see Append	dix 2)
Apogon pseudomaculatus	twospot cardinalfish		R	N				OS				P			IS M	IS		S	R				IS	MS OS	SI				R	6 28 54		i T
Pomatomus saltatrix	bluefish			S P				OS				Р		E C						Р		С	IS					Р		1 3 28		
Rachycentron canadum	cobia		TS				MS	OS				Р		E C						Р		С	IS					-	R	43		
Echeneis naucrates	sharksucker		T S		NO DA				-			P		NO DATA				_		P P			IS					P		33 22 41		
Remora remora Caranx bartholomaei	yellow jack		T		NODA	ATA	IS MS	OS	-		-	P		NO DATA		IS OS SI		s	PV	P			IS	MS OS MS OS					R	28 54 23		
Caranx bartholomael Caranx crysos	blue runner	a		S P		c		OS				P				IS OS SI			PV	P		с	IS						R	28 23		
Caranx dentex	white trevally	a		S P		c		OS				P		E C		IS OS SI			PV	P		E C							R	28 28		
Caranx ruber	bar jack	а		S P		С		OS				Р				IS OS SI			PV	Р		С							R	28 22		1
Chloroscombrus chrysurus	Atlantic bumper	а	TS	S P		С		OS				Р				IS			PV	Р		С	IS					Р		28 54 23		
Decapterus macarellus	mackerel scad	а		S P				OS				Р				IS OS SI		s	PV	Р				MS OS				-	R	6 28 54		
Decapterus punctatus	round scad	a		S P			IS MS	OS			_	Р			IS M	IS OS SI		S	PV	P			IS	MS OS	+				R	6 28 54		\vdash
Selene spp.	lookdown / moonfish greater amberjack			S P S P			-	OS		+ $+$		P		NO DATA				-	DV	۲		E C	IS	100 000	0	_	+		R	33 28 23		$ \rightarrow $
Seriola dumerili Seriola rivoliana	greater amberjack almaco jack			S P S P	\vdash		+ + -	OS OS	_	+ $+$	-	۲ ۵	\vdash			IS OS SI IS OS SI	+ $+$		PV PV	P			IS	MS OS MS OS			+		R R	28 23 28 23	$\left \right $	+
Trachurus lathami	rough scad			S P				OS	-			P		NO DATA			+	+	<u> </u>	P			+	MS OS		-	+ +	-	R	28 23		++
Coryphaena hippurus	dolphin			S P			IS MS	OS			-	P			IS M	IS OS SI			PV	P			IS			PV	+	P		28 23		++
Lutjanus analis	mutton snapper			E P				OS				P			IS		SV		R			С	IS				SV		R	28 54 9		
Lutjanus campechanus	red snapper			S P				OS				Р			IS M	IS		s	R				IS						R	28 9		,
Lutjanus griseus	gray snapper			E P				OS				Р		E C			SV		R			С					SV		R	1 28 9		
Ocyurus chrysurus	yellowtail snapper		ΤE					OS				Р		E C	IS		SV		R			С	IS				SV S		R	9		
Rhomboplites aurorubens	vermilion snapper			S P				OS			_	P			M	IS OS SI		_	PV R			_		MS OS					R	28 9 56		
Gerreidae	mojarras tomtate		TS	S P P				OS OS				P		NO DATA			SV		_			E C	IS				SV S			33 28 23		
Haemulon aurolineatum Haemulon plumieri	white grunt	а	R T S					OS			_	P				IS OS	SV	s	R		_	C C		MS OS MS	_		SV S		R R	41 28 54 41 28 23		<u> </u>
Orthopristis chysoptera	pigfish		R	3 F P				OS			-	P			IS IN	13 03	SV	0	n n			E C		MS			SV S		n.	23		
Archosargus probatocephalus	sheepshead		R	P				os				P			IS		SV		R			E C	IS				SV S		R	41 23		<u> </u>
Calamus bajonado	jolthead porgy		R	P				OS				Р		NO DATA									IS	MS OS			SV		R	41 40		
Calamus leucosteus	whitebone porgy		R	Р				OS				Р		NO DATA									IS				SV		R	41 40		
Diplodus holbrooki	spotfin pinfish	а	R	P				OS				Р		NO DATA								E C	IS				SV S		R	41 23		
Lagodon rhomboides	pinfish	а	τs			С	IS MS					Р			IS M		SV	s	R		Р	E C	IS	MS OS			SV S		R	28 54 23		
Pagrus pagrus	red porgy		R	P				OS			_	P				IS OS SI		_	PV R		_			MS OS			5		R	28 27		
Stenotomus sp Cvnoscion nothus	scup silver seatrout	а	R T S	P S P		С	IS MS	OS			_	P			IS M IS	IS		S	R		_	C C	IS		-		5		R	54 23 33 41 28	54	<u> </u>
Cynoscion regalis	weakfish		T			c	IS IVIS				-	P			IS		SV	s			-	E C					SV S			1 33 3		
Equetus acuminatus	high-hat		T E		NO DA				-			P		NO DATA			0.	Ŭ					IS				SV S		R	6	20 01	<u> </u>
Equetus lanceolatus	jackknife-fish		ΤĒ		NO DA				-			Р		NO DATA									IS	MS OS			5		R	6 56		
Equetus umbrosus	cubbyu		R	Р	NO DA				-			Р		NO DATA									IS	MS OS			5	3	R	41		
Pogonias cromis	black drum			S P	E	С	IS					P			IS		SV					E C	IS				5		R	1 33 28		
Larimus fasciatus	banded drum	а		S P		С	IS MS					Р			IS			S	+	\vdash		С		MS	+		5			33 28 54		$ \square$
Leiostomus xanthurus	spot	а		S P	\vdash	-	IS MS	+	_		-	P	-		IS		+	S	+	-		E C			+		SV S		$\left \right $	1 33 28		+
Menticirrhus americanus Menticirrhus littoralis	southern kingfish gulf kingfish			S P S P	$\left \right $	C	IS IS	+		$\left - \right $		2	-	C C	IS		+ $-$	S	+	+		E C E C	IS		+	_	5			33 28 54 33	$\left \right $	+
Micropogonias undulatus	Atlantic croaker	a		S P		c	IS MS	+				P		E C				s				E C			+		SV S			1 33 3	28	+
Sciaenops ocellatus	red drum			S P		c	IS	+				Р		E C			SV	-	R			E C	IS		++		SV S	5	R	33 41 28		+
Mulloidichthys martinicus	yellow goatfish			S P				OS				Р			IS M	IS OS SI		S	PV R				IS	MS OS			5		R	41 28 22		
Mullus auratus	red goatfish			S P				OS				Р		NO DATA									IS	MS OS			5	3		41 28 56		
Pseudopeneus maculatus	spotted goatfish			S P				OS				Р			IS M	IS OS SI		S	PV R				IS	MS			5		R	28 22		Ш
Upeneus parvus	dwarf goatfish		TS					OS				P		NO DATA						$ \vdash \vdash $				MS OS	+		SV S		R	41 28 22		+
Chaetodipterus faber	Atlantic spadefish		R	P	NO DA	A I'A	1	00	-	+ $+$	_	P	-	NO DATA	10 1		+ $-$		R	$\left - \right $	Р	E C		140	+		SV	-	R	23		\square
Chaetodon ocellatus Chaetodon sedentarius	spotfin butterflyfish reef butterflyfish		R T E	P E P			-	OS OS		+	-	P	\vdash		IS M IS M	IS OS	+	-	R	+		С		MS MS OS	+	-	+		R R	1 28 22 28 22	$\left \right $	++
Holocanthus bermudensis	blue angelfish		R		NO DA	TA		05	-			P				IS OS			R					MS OS			+		R	20 22		+
Holocentrus ascencionis	squirrelfish		TE					OS				P.				IS			R					MS	++		+		R	41 28 22		+
Abudefduf saxatilis	sargeant major			E N				OS			1	Р				IS OS SI			PV R				IS						R	28 22		++
Pomacentrus partitus	bicolor damselfish			E N				OS				Р			IS M				R					MS					R	28 22		
							1	OS							IS M			1	R					MS					R	28 22		
Pomacentrus variabilis	cocoa damselfish		T E								_	P																	· · ·			
Mugil cephalus	striped mullet		TS	S P			IS MS					P		E C	IS M			s		Р	Р	E C	IS					Р		1 33 28		<u> </u>
Mugil cephalus Mugil curema	striped mullet white mullet		T S	S P S P				OS				P		E C E C	IS M IS			S S		P P	Ρ	E C	IS IS	MS				P P		1 33 28 1 33 28	54 23	
Mugil cephalus	striped mullet		T S	S P S P S P								P P P P		E C E C E C	IS M		SV SV	S		P P P	P	-	IS IS IS	MS MS OS			SV SV	P P P	R	1 33 28	54 23	

a a b <td< th=""><th></th><th></th><th></th><th>Egg</th><th>Larv</th><th>ae</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Juveniles</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Ad</th><th>ults</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>				Egg	Larv	ae								Juveniles								Ad	ults									
			\vdash	+							-				-				-		T			-								
Alterna <t< th=""><th></th><th>Aburndance</th><th>Spawning Resident / Transient</th><th>Expatriates / Life History Pelagic \ Non-pelagic</th><th>Palustrine</th><th>Estuarine</th><th>Inner-shelf</th><th>Outer-shelf</th><th>Slope Abysall</th><th>Emergent Vegetation Submerged Vegetation</th><th>Emergent Sediment</th><th>Submerged Sediment Pelagic</th><th>Reef</th><th>Palustrine Estuarine Coastal</th><th></th><th>Mid-shelf</th><th>Outer-shelf Slope</th><th>Abysall Bethic Vegetation</th><th>Submerged Sediment</th><th>Pelagic Vegetation Reef</th><th>Pelagic</th><th>Dalustrine</th><th>Estuarine</th><th>Coastal</th><th>Inner-shelf Mid-shelf</th><th>Outer-shelf Slone</th><th>Abysall</th><th>Pelagic Vegetation Submerged Vegetation</th><th>Submerged Sediment Peladic</th><th>Coral, Rocky, Oyster Reef</th><th>References</th><th>(see Appendix 2</th></t<>		Aburndance	Spawning Resident / Transient	Expatriates / Life History Pelagic \ Non-pelagic	Palustrine	Estuarine	Inner-shelf	Outer-shelf	Slope Abysall	Emergent Vegetation Submerged Vegetation	Emergent Sediment	Submerged Sediment Pelagic	Reef	Palustrine Estuarine Coastal		Mid-shelf	Outer-shelf Slope	Abysall Bethic Vegetation	Submerged Sediment	Pelagic Vegetation Reef	Pelagic	Dalustrine	Estuarine	Coastal	Inner-shelf Mid-shelf	Outer-shelf Slone	Abysall	Pelagic Vegetation Submerged Vegetation	Submerged Sediment Peladic	Coral, Rocky, Oyster Reef	References	(see Appendix 2
matcale <th>Halichoeres bivittatus</th> <th></th> <th>Р</th> <th></th> <th></th> <th>IS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>15</th> <th></th> <th></th> <th></th> <th>SV</th> <th>s</th> <th>R</th> <th></th> <th>1 39</th>	Halichoeres bivittatus											Р			IS									15				SV	s	R		1 39
with a state of the	Halichoeres caudalis						MS									MS O	S									3						
	*				NO D	ATA								E C			-		-	R			0			_	_		-	R		
												P			IS	MS O	s	SV/	s								_		s	в		3 54 56 37
	Nicholsina usta											P							s										s			
	Scarus taeniopterus	princess parrotfish										P			IS				Ĩ										-	R		
	Sparisoma aurofrenatumS. radia		Т				MS	OS				Р		С	IS			SV		R			0					SV		R		
bitbi	Uranoscopidae		-									Р		С			S SI		s				0			S SI						
	Dactyloscopus moorei											Р			IS	MS			S										S			2
										\vdash	-	P	\vdash					SV	s		+						+	SV	\vdash	_		++++
										+ + -	+	P	\vdash		19	MS O	 IS SI	ev/	s		++		-				+	Q1/	\vdash			++++
bip bip< bip< bip< bip<		,									+	P						50	3	- V PC								51				
	Diplogrammus pauciradiatus								-		-	P			IS	MS O	S		s									sv	s	·`		
best best best be	Coryphopterus glaucofraenum			Р							1	Р							s	R										R		
borngebar see and	Gobiosoma ginsburgi					E C						Р		E C					s	R			E (C IS	S MS					R	1 33	
	loglossus calliurus											P	\square		_				S	\square						3						
and maximum bit bit bit bit b												P					s		S	-									S	_		
base of the processes base of the proces base of the processes												P					_										_					
conder-source bit c c c c c c c c c c c c c c c c c c c c c c c c c c c c c </td <td></td> <th></th> <td></td> <td>9 91</td> <td></td> <td></td> <td>ĸ</td> <td>P</td> <td></td> <td></td> <td></td> <td></td> <td>2 21</td> <td>-</td> <td></td> <td>P</td> <td>ĸ</td> <td></td> <td></td>																	9 91			ĸ	P					2 21	-		P	ĸ		
condermanualizational matrix matrix <td></td> <th></th> <td></td> <td>S P</td> <td></td> <td></td> <td>10 100</td> <td></td> <td></td> <td></td> <td></td> <td>P</td> <td></td>				S P			10 100					P																				
since straining	Scomberomorus maculatus		т	S P			IS					P									Р								P			
oppla part oppla part oppla pa	Euthynnus alletteratus	little tunny	Т	S P			IS MS	OS				Р			IS	MS					Р			15	S MS OS	3			Р		28 10	
martan martan martan martan <td>Psenes maculatus</td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Р</td> <td></td> <td></td> <td></td> <td></td> <td>S SI</td> <td></td> <td></td> <td>PV</td> <td>Р</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>P</td> <td></td> <td></td> <td></td>	Psenes maculatus											Р					S SI			PV	Р								P			
mprode mandma mprodemandma mprode mandma mprode ma				-								P		E C							Р		0				_		· ·			
and a conduct - 4 column and a conduct - 4 column and a conduct - 4 column b	· · · · · · · · · · · · · · · · · · ·					E O						P					_				P						_					
non-second matrix matrix matrix matrix matri						EC						P		EC	IS	MS O	s		-	PV	P						-					
mage mage <th< td=""><td></td><th>a</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>P.</td><td></td><td></td><td></td><td></td><td>Ŭ</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		a										P.					Ŭ		-							_						
minuch with with with with with with with wit	Etropus crossotus	fringed flounder a		S P								Р		E C									0									
number number<	Cyclopsetta fimbriata											Р							s													
appendip and marked binary display binary binary <td>Citharichthys macrops</td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Р</td> <td></td> <td></td> <td></td> <td>MS O</td> <td>s</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Citharichthys macrops											Р				MS O	s		-							3						
image: bit public pub						С						Р		E C									0			_						
inside function inside fun									_						IS	MS O	s									3						
Operations and outling demonder T S P NO DATA P										+ + -	+	P	\vdash	E C	19	MS O	s			\vdash	++		-	- 18			+					
windowpane Indowpane <				-	NO D	ATA	1.0 1.00				+	P		E C									6	C 15								
inprogram matrix matrix <th>Scophthalmus aquosus</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>IS MS</th> <th></th> <th></th> <th></th> <th>1</th> <th>P</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th>	Scophthalmus aquosus						IS MS				1	P					-															
andie dynamic s P MS OS MS OS P	Hippoglossina oblonga	american fourspot flounder		S P			MS					Р													S MS OS	S SI						9
spotedim largescale droguelish v vmphurus durus vmphurus vmmurus vmphurus vm	Paralichthys albigutta											P		E C					s							3						
mphrux minor largescale tonguefish V <	Paralichthys lethostigma								_	\vdash	1	P		E C					-				E	C IS		_						
mphurus pagikas bacheche togoufish T S P V<											-	P					~		-			_	+								28 54 3	
apprendix uncopilities specifies sp									_	+	+	P	\vdash	E O			S		-	\vdash	+	_	- /			>						
indicates maculatis hoghoker r S P C IS P IS											1	P					s		-				6			3	+			R		
ymmaching melas naked sole T S P Q MS QS P Q MS QS P Q P Q P Q P Q P Q P Q P <th< th=""><th>Trinectes maculatus</th><th></th><th></th><th></th><th></th><th>С</th><th></th><th></th><th></th><th></th><th>+</th><th>P</th><th></th><th>E C</th><th>13</th><th></th><th>- -</th><th></th><th></th><th></th><th></th><th>Р</th><th>E</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>IX.</th><th></th><th></th></th<>	Trinectes maculatus					С					+	P		E C	13		- -					Р	E			-				IX.		
Internascionality orange filefish T S	Gymnachirus melas							OS				Р			IS	MS O	S		s							3						
Internascipular scrawled filelish T S V Internascipular P P P P P R 6 V P R 6 V P R 6 V P R 6 V P R 6 V P R 6 V P R 6 V P R 6 V P R 6 V <th< th=""><th>Aluterus heudeloti</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Р</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>R</th><th></th><th></th></th<>	Aluterus heudeloti											Р																		R		
alises capricus gray triggerlish R <	Aluterus schoepfi											Р											E (3						
antherhines pullus orangespotted filefish T S V V S V <td>Aluterus scriptus</td> <th></th> <td></td> <td>S</td> <td></td> <td></td> <td>IS MS</td> <td></td> <td></td> <td></td> <td>-</td> <td>P</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SV</td> <td></td> <td></td> <td>+</td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Aluterus scriptus			S			IS MS				-	P						SV			+		+									
tephanoplicity is planchead filefish a R V							+ +			$\left - \right $	+	P									+					5			S			++++
actophys quadicionis scrawled cowfish R R I I IS MS OS P IS MS OS IS MS IS				3			+ +-			$\left - \right $	+	P									+						-		s			29
actophys trigonus smooth trunklish T S I IS MS OS P NO DATA							IS MS				+	P											6									
phoeroides dorsalis mathemputer T S I I S I S S P P C IS C IS IS<	Lactophrys trigonus			s							1	P		NO DATA					1													
phoenides spengleri bandtall putter U S S S S S S S S S S S S S S S S S S	Sphoeroides dorsalis		Т	s			IS MS	OS				Р		С			S		s						MS OS	3			S P		56 44	
	Sphoeroides maculatus											P									Р		E									
hilomyclerus schoepfi stripped burrlish R NO DATA P NO DATA SV R E C IS SV R 33 41	Sphoeroides spengleri			S			IS MS	OS		\vdash	1	P				MS O	S SI															++++
	Chilomycterus schoepfi	stripped burrfish	R		NO D	ATA					1	Р		NO DATA				SV	1	R			E	C IS	S			SV		R	33 41	

Appendix 2. References used in the determination of habitat utilization and cross-shelf

zone utilization of larval, juvenile, and adult stages of fishes from the vicinity of Gray's

Reef National Marine Sanctuary (see Appendix 1).

- Able, K. W., and M. P. Fahay. 1998 The first year in the life of estuarine fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, New Jersey, USA. 342 p.
- Anderson, W. W., J. W. Gehringer, and F. H. Berry. 1966. Family Synodontidae. *In* Fishes of the western North Atlantic, Part Five, Order Iniomi, Aulopidae, Synodontidae, Bathysauridae, Bathypteroidae, Ipnopidae, Chloropthalmidae, Myctophidae, and Neoscopelidae, Scopelosauridae, Paralepididae, Ososudidae, Alepisauridae, Anotopteridae, Evermannellidae, Scopelarchidae, Order Lyomeri, Eurypharyngidae, Saccopharyngidae. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.
- Berrien, P., and J. Sibunka. 1999. Distribution patterns of fish eggs in the U.S. northeast continental shelf ecosystem, 1977-1987. NOAA Technical Report NMFS 145:1-310.
- 4. Birdsong, R. S. 1981. A review of the gobiid fish genus Microgobius Poey. Bulletin of Marine Science 31:267-306.
- Böhlke, E. B. 1989. Family Muraenidae, morays. *In* E. B. Böhlke (editor), Fishes of the western North Atlantic, Part Nine, Volume 1, Orders Anguilliformes and Saccopharyngiformes. p. 104-206. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA
- 6. Böhlke, J. E., and C. G. Chaplin. 1970. Fishes of the Bahamas and adjacent tropical waters. Livinston Publishing Company, Wynnewood, Pennslyvania, USA. 771 p.
- Bradbury, M. G. 1980. A revision of the fish genus Ogcocphalus with descriptions of new species from the western Atlantic Ocean (Ogcocephalidae; Lophiiformes). Proceedings of the California Academy of Sciences 42(7):229-285.
- Bullock, L.H., and G. B. Smith. 1991. Seabasses (Pisces:Serrandiae). Memoirs of the Hourglass Cruises, 8(Part II). Florida Marine Research Institute, St. Petersburg, Florida.
- 9. Carpenter, K. E. (ed.). 2002. The living marine resources of the Western Central Atlantic Food and Agriculture Organization of the United Nations, Rome 2002. 2127 p.
- 10. Collette, B. B., and C. E. Nauen. 1983. FAO species catalogue. Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and

related species known to date. Food and Agriculture Organization of the United Nations, Rome, Italy, 135.

- 11. Davis, W. P. 1966. A review of the dragonets (Pisces: Callionymidae) of the western Atlantic Ocean. Bulletin of Marine Science 16:834-862.
- Dawson, C. E. 1982. Atlantic sand stargazers (Pisces: Dactyloscopidae), with description of one new genus and seven new species. Bulletin of Marine Science 32: 14-85.
- 13. Dawson, C. E., and R. P. Vari. 1982. Fishes of the western North Atlantic, Part Eight, Order Gasterosteiformes, Suborder Synathoidei, Syngnathidae (Doryrhamphinae, Syngnathinae, Hippocampinae). Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.
- 14. Eschmeyer, W. N. 1965. Western Atlantic scorpionfishes of the genus Scorpaena, including four new species. Bulletin of Marine Science 15:84-164.
- Fritzsche, R. A. 1978. Development of fishes of the Mid-Atlantic Bight. An atlas of egg, larval, and juvenile stages. Vol. V. Chaetodontidae through Ophidiidae. U.S. Fish Wildl. Ser. Biol. Serv. Prog. FWS/OBS-78/12, 340 p.
- 16. Ginsburg, I. 1952. Flouders of the genus Paralichthys and related genera in American waters. Fishery Bulletin 52:267-351.
- 17. Haedrich, R. L. 1967. The stromateoid fishes: systematics and a classification. Bulletin of the Museum of Comparative Zoology 135:31-139.
- Hardy, J. D. 1978. Development of fishes of the Mid-Atlantic Bight. An atlas of egg, larval, and juvenile stages. Vol. III. Aphredoderidae through Rachycentridae. U.S. Fish Wildl. Ser. Biol. Serv. Prog. FWS/OBS-78/12, 394 p.
- Heemstra, P. C., and J. E. Randall. 1993. FAO species catalogue. Vol. 16. Groupers of the world (Family Serrandiae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. Food and Agriculture Organization of the United Nations, Rome, Italy, 382 p.
- 20. Hildebrand, S. F. 1963. Family Clupeidae. p. 257-454. *In* Fishes of the western North Atlantic, Part three, Soft-rayed bony fishes Class Osteichthyes, Order Acipenseroidei, Order Lepisostei, Order Isospondyli, Suborder Elopoidea, Suborder Clupeoidea, Suborder Salmonoidea. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.
- 21. Hildebrand, S. F. 1963. Family Engraulidae. p. 152-249. *In* Fishes of the western North Atlantic, Part three, Soft-rayed bony fishes Class Osteichthyes, Order Acipenseroidei, Order Lepisostei, Order Isospondyli, Suborder Elopoidea, Suborder

Clupeoidea, Suborder Salmonoidea. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.

- 22. Humann, P. 1989. Reef fish identification, Florida, Caribbean, Bahamas. New World Publications, Jacksonville, Florida, USA, 396 p.
- Johnson, G. D. 1978. Development of fishes of the Mid-Atlantic Bight. An atlas of egg, larval, and juvenile stages. Vol. IV. Carangidae through Ephippidae. FWS/OBS-78/12, 311 p.
- Lea, R. N., and C. R. Robins. 2003. Four new species of the genus Ophidion (Pisces: Ophidiidae. Scientific Papers of the Natural History Museum of the University of Kansas 31:1-9.
- 25. Leiby, M. M. 1989. Family Ophichthidae: Leptocephali. *In* E. B. Böhlke (editor), Fishes of the western North Atlantic, Part Nine, Volume 2, Leptocephali. p. 764-897. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.
- 26. Leslie, A. J., and D. J. Stewart. 1986. Systematics and distributional ecology of Etropus (Pisces, Bothidae) on the Atlantic coast of the United States with a description of a new species. Copeia 1986:140-156.
- Manooch, C.S. III, and W. W. Hassler. 1978. Synopsis of biological data on the red porgy, Pagrus pagrus, (Pisces: Sparidae) in North Carolina. NOAA Tech. Rep. NMFS Circ. 412, 19 p.
- Marancik, K. E., L. M. Clough, and J. A. Hare. 2005. Cross-shelf and seasonal variation in larval fish assemblages on the southeast United States continental shelf off the coast Georgia, USA. Fishery Bulletin 103:108-129.
- Martin, F. D., and G. E. Drewry. 1978. Development of fishes of the Mid-Atlantic Bight. An atlas of egg, larval, and juvenile stages. Vol. VI. Stromateidae through Ogcocephalidae. U.S. Fish Wildl. Ser. Biol. Serv. Prog. FWS/OBS-78/12, 416 p.
- 30. McCosker, J. E., E. B. Böhlke, and J. E. Böhlke. 1989. Family Ophichthidae, snake eels and worm eels. *In* E. B. Böhlke (editor), Fishes of the western North Atlantic, Part Nine, Volume 1, Orders Anguilliformes and Saccopharyngiformes. p. 254-412. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.
- McEachran, J. D., and J. D. Fechhelm. 1998. Fishes of the Gulf of Mexico. Volume 1: Myxiniformes to Gasterosteiformes. University of Texas Press, Austin, Texas, USA, pp. 1112 p.
- Munroe, T. A. 1998 Systematics and ecology of toungefishes of the genus Symphurus (Cynoglossidae: Pleuronectiformes) from the western Atlantic Ocean. Fishery Bulletin 96:1-182.

- 33. Murdy, E. O., R. S. Birdsong, and J. A. Musick. 1997. Fishes of Chesapeake Bay. Smithsonian Institution Press, Washington, D.C., USA, pp. 324 p.
- 34. Nielsen, J. G., D. M. Cohen, D. F. Markle, and C. R. Robins. 1999. FAO species catalogue. Volume 18. Ophidiiform fishes of the world (Oder Ophidiiformes). An annotated and illustrated catalogue of pearlfishes, cusk-eels, brotulas and other ophidiiform fishes known to date. FAO Fisheries Synopsis. No. 125, Vol. 18 Rome, FAO. 178 p.
- Perschbacher, P. W., K. J. Sulak, and F. J. Schwartz. 1979. Invasion of the Atlantic by Peprilus burti (Pisces: Stromateidae) and possible implication. Copeia 1979:538-541.
- Powell, A. B., and F. J. Schwartz. 1977. Distribution of paralichthid flounders (Bothidae: Paralichthys) in North Carolina estuaries. Chesapeake Science 18:334-339.
- 37. Randall, J. E. 1965. A review of the razorfish genus Hemipteronotus (Labridae) of the Atlantic Ocean. Copeia 1965:487-501.
- Randall, J. E. 1983. Caribbean reef fishes. T. F. H. Publications, Neptune City, New Jersey, 318 p.
- Randall, J. E., and J. E. Böhlke. 1965. Review of the Atlantic labrid fishes of the genus *Halichoeres*. Proceedings of the Academy of Natural Sciences of Philadelphia 117:235-259.
- 40. Randall, J. E., and D. K. Caldwell. 1966. A review of the sparid fish genus Calamus, with descriptions of four new species. Bulletin of the Los Angeles County Museum of Natuarl History and Science 2:1-47.
- 41. Robins, C. R., and G. C. Ray. 1996. A field guide to Atlantic coast fishes of North America. Houghton Mifflin Company, Boston, Massachusetts, USA, 354 p.
- Ross, S. T. 1983. Searobins (Pisces: Triglidae). Memoirs of the hourglass cruises VI(Part IV): p. 1-76. Marine Research Laboratory, Florida Department of Natural Resources, St. Petersburg, Florida.
- Shaffer, R. V., and E. L. Nakamura. 1989. Synopsis of biological data on the cobia Rachycentron canadum (Pisces: Rachycentridae). NOAA Technical Report NMFS 82, 21 p.
- 44. Shipp, R. L. 1974. The pufferfishes (Tetradontidae) of the Atlantic Ocean. Gulf Coast Research Laboratory, Ocean Springs, Mississippi, USA.
- 45. Smith, D. G. 1989 Family Anguillidae, freshwater eels. *In* E. B. Böhlke (editor), Fishes of the western North Atlantic, Part Nine, Volume 1, Orders Anguilliformes

and Saccopharyngiformes. p. 25-27. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA

- 46. Smith, D. G. 1989. Family Congridae, conger eels. *In* E. B. Böhlke (editor), Fishes of the western North Atlantic, Part Nine, Volume 1, Orders Anguilliformes and Saccopharyngiformes. p. 460-567. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.
- 47. Smith, D. G. 1989. Family Congridae: Leptocephali. *In* E. B. Böhlke (editor), Fishes of the western North Atlantic, Part Nine, Volume 2, Leptocephali. p. 723-763. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.
- 48. Smith, D. G. 1989. Family Muraenidae: Leptocephali. *In* E. B. Böhlke (editor), Fishes of the western North Atlantic, Part Nine, Volume 2, Leptocephali. p. 900-916. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, USA.
- 49. Smith-Vaniz, W. F., B. B. Collette, and B. E. Luckhurst. 1999. Fishes of Bermuda: history, zoogeography, annotated checklist, and identification keys. American Society of Ichthyologists and Herpetologists Special Publication Number 4, Allen Press Inc., Lawrence, Kansas, USA, 424 p.
- Starnes, W. C. 1998. Revision, phylogeny, and biogeographic comments on the circumtropical marine percoid fish family Priacanthidae. Bulletin of Marine Science 43:117-203.
- 51. Topp, R. W., and F. H. Hoff. 1972. Flatfishes (Pleuronectiformes) Memoirs of the Hourglass Cruises IV(Part 1): p. 1-135. Marine Research Laboratory, Florida Department of Natural Resources, St. Petersburg, Florida.
- 52. Tucker, J. W. 1982. Larval development of *Citharichthys cornutus*, *C. gymnorhinus*, *C. spilopterus*, and *Etropus crossotus* (Bothidae), with notes of larval occurrence. Fishery Bulletin 80:35-73.
- 53. Turner, W. R., and G. N. Johnson. 1973. Distribution and relative abundance of fishes in Newport River, North Carolina. NOAA Technical Report NMFS SSRF-666. 23 p.
- 54. Walsh, H. J., K. E. Marancik, and J. A. Hare. In review. Cross-shelf and seasonal variation in juvenile fish assemblages on the southeast United States continental shelf off the coast Georgia, USA. Fishery Bulletin
- 55. Walsh, H. J., D. S. Peters, and D. P. Cyrus. 1999. Habitat utilization by small flatfishes in a North Carolina estuary. Estuaries 22:808-813.
- 56. Wenner, C. A. 1983. Species associations and day-night variability of trawl-caught fishes from the inshore sponge-coral habitat, South Atlantic Bight. Fishery Bulletin 81:537-552.